Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 58.1
bearbeitet von Martin Rathgeb
am 2024/10/14 15:21
am 2024/10/14 15:21
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 109.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:20
am 2024/10/14 21:20
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,28 +11,74 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 -{{aufgabe id="Erkunden: Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitions- und den maximalen Wertebereich an; skizziere die Graphen der Funktionen in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. 16 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 14 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 +Ergänze nachfolgende Wertetabelle zu folgender Funktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}}. Erkennst du eine Symmetrie? 16 + 17 +(% style="list-style: alphastyle" %) 18 +((( 19 +1. Randverhalten: Globalverhalten - Verhalten im Unendlichen 20 +((( 21 +(% style="list-style: alphastyle" %) 22 +1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 23 +(% class="border" %) 24 +|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}1000{{/formula}}| {{formula}}10000{{/formula}} 25 +|={{formula}}f(x){{/formula}}||||| 26 + 27 +1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 28 +(% class="border" %) 29 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10000{{/formula}} 30 +|={{formula}}f(x){{/formula}}||||| 31 +))) 32 +))) 33 +((( 34 +1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 35 +((( 36 +(% style="list-style: alphastyle" %) 37 +1. Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 38 +(% class="border" %) 39 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 40 +|={{formula}}f(x){{/formula}}||||| 41 + 42 +1. Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 43 +(% class="border" %) 44 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 45 +|={{formula}}f(x){{/formula}}||||| 46 +))) 47 +))) 17 17 {{/aufgabe}} 18 18 19 -{{aufgabe id="Erkunden: Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 20 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitions-, den maximalen Wertebereich und Asymptoten an; skizziere die Graphen der Funktionen in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. 21 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 50 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 51 +Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 52 + 53 +(% class="border" %) 54 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 55 +|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 56 +|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA"}} 25 -Gib jeweils den maximalen Definitions-, den maximalen Wertebereich und Asymptoten an; skizziere die Graphen der Funktionen: 59 +{{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 60 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 61 +{{/aufgabe}} 62 + 63 +{{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 64 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 65 +{{/aufgabe}} 66 + 67 +{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 68 +Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten: 69 + 70 +(% style="list-style: alphastyle" %) 26 26 1. {{formula}}f(x)=\frac{1}{x-2}+1{{/formula}} 27 27 1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}} 28 28 {{/aufgabe}} 29 29 30 30 {{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="??" cc="BY-SA"}} 31 - Bestimmezu denuntengenanntenFunktionenden (1) Globalverlauf, die(2)Symmetrie,den (3) Definitions-und den (4) Wertebereichund gegebenenfalls (5) waagerechte und senkrechte Asymptoten.76 +Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}. 32 32 33 33 (% style="list-style: alphastyle" %) 34 -1. Das Schaubild der Funktion g ist eine Parabel vierter Ordnung mit dem Scheitel {{formula}}S(-2| 3){{/formula}}, die um den Streckungsfaktor {{formula}}\frac{1}{2}{{/formula}} in y-Richtung gestreckt wurde. 35 -1. Die Funktion h ist eine Potenzfunktion mit {{formula}}h(x) = \frac{-3}{x-2}+4{{/formula}} 79 +1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an. 80 +1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote. 81 +1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist. 36 36 {{/aufgabe}} 37 37 38 38 {{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}