Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 98.1
bearbeitet von Martin Rathgeb
am 2024/10/14 19:17
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 47.1
bearbeitet von Holger Engels
am 2024/10/14 14:18
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.holgerengels
Inhalt
... ... @@ -11,55 +11,22 @@
11 11  Symmetrie
12 12  Stetigkeit
13 13  
14 -{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
15 -Ergänze nachfolgende Wertetabelle zu folgender Funktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}}. Erkennst du eine Symmetrie?
16 -
17 -(% style="list-style: alphastyle" %)
18 -1. Randverhalten: Verhalten im Unendlichen
19 -
20 -(% class="border" %)
21 -|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 10{{/formula}}| {{formula}}\pm 100{{/formula}}| {{formula}}\pm 1000{{/formula}}| {{formula}}\pm 10000{{/formula}}
22 -|={{formula}}f(x){{/formula}}|||||
23 -
24 -1. Randverhalten: Definitionslücke
25 -
26 -(% class="border" %)
27 -|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}}
28 -|={{formula}}f(x){{/formula}}||||
14 +{{aufgabe id="Skizzieren" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA"}}
15 +Skizziere die Graphen der Funktionen //f// und //g// mit {{formula}}f(x)=x^3{{/formula}} und {{formula}}g(x) = x^{1/3}{{/formula}} in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht.
29 29  {{/aufgabe}}
30 30  
31 -{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
32 -Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie?
33 -
34 -(% class="border" %)
35 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}}
36 -|={{formula}}f(x){{/formula}}|||||||||||||||||||||||
37 -|={{formula}}g(x){{/formula}}|||||||||||||||||||||||
38 -{{/aufgabe}}
39 -
40 -{{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
41 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
42 -{{/aufgabe}}
43 -
44 -{{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
45 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
46 -{{/aufgabe}}
47 -
48 -{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
49 -Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten:
50 -
51 -(% style="list-style: alphastyle" %)
18 +{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA"}}
19 +Gib jeweils den Definitions- und den Wertebereich an:
52 52  1. {{formula}}f(x)=\frac{1}{x-2}+1{{/formula}}
53 53  1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}}
54 54  {{/aufgabe}}
55 55  
56 56  {{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="??" cc="BY-SA"}}
57 -Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}.
25 +Bestimme zu den unten genannten Funktionen den (1) Globalverlauf, die (2) Symmetrie, den (3) Definitions- und den (4) Wertebereich und gegebenenfalls (5) waagerechte und senkrechte Asymptoten.
58 58  
59 59  (% style="list-style: alphastyle" %)
60 -1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an.
61 -1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote.
62 -1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist.
28 +1. Das Schaubild der Funktion g ist eine Parabel vierter Ordnung mit dem Scheitel {{formula}}S(-2| 3){{/formula}}, die um den Streckungsfaktor {{formula}}\frac{1}{2}{{/formula}} in y-Richtung gestreckt wurde.
29 +1. Die Funktion h ist eine Potenzfunktion mit {{formula}}h(x) = \frac{-3}{x-2}+4{{/formula}}
63 63  {{/aufgabe}}
64 64  
65 65  {{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}
... ... @@ -86,7 +86,7 @@
86 86  {{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
87 87  Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten stetig sind!
88 88  [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]]
89 -[[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit lie.svg||style="margin: 8px"]] [[image:Stetigkeit lei.svg||style="margin: 8px"]] [[image:Stetigkeit lii.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %)(((Hinweis:
56 +[[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit lie.svg||style="margin: 8px"]] [[image:Stetigkeit lei.svg||style="margin: 8px"]] [[image:Stetigkeit lii.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (((Hinweis:
90 90  ⬤ schließt den Punkt ein
91 91  ⭘ schließt ihn aus)))
92 92  {{/aufgabe}}
Stetigkeit.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Größe
... ... @@ -1,1 +1,0 @@
1 -51.3 KB
Inhalt