Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 18.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:27
am 2025/04/07 00:27
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 24.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:33
am 2025/04/07 00:33
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -41,34 +41,16 @@ 41 41 iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 42 42 43 43 | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} | 44 -|----------------------------------|----------|---------------------------------------------| 45 -| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 46 -| {{formula}}(-\sqrt{3}, -1){{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 47 -| {{formula}}(-1,\ 1){{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 48 -| {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 49 -| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 44 +| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) > 0{{/formula}} | 45 +| {{formula}}]-\sqrt{3}; -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} | 46 +| {{formula}}]-1;\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} | 47 +| {{formula}}]1;\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} | 48 +| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) > 0{{/formula}} | 50 50 51 51 iv) //Gesuchte Lösung:// 52 -Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}=]-\infty; -\sqrt{3}[ \cup ]-1; +1[ \cup ]\sqrt{3}; +\infty[{{/formula}} 51 +Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}\quad =\quad ]-\infty; -\sqrt{3}[ \quad\cup\quad ]-1; +1[ \quad\cup\quad ]\sqrt{3}; +\infty[{{/formula}} 53 53 54 -5. **Vergleich der Verfahren:** 55 - 56 -- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen. 57 -- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig. 58 -- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus. 59 - 60 -**Didaktisch:** 61 -Die Verfahren stehen in einer natürlichen Lernprogression: 62 -Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen. 63 - 64 -{{/loesung}} 65 - 66 ---- 67 - 68 -**Zusammenfassung:** 53 +**Anmerkung:** 69 69 - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe. 70 70 - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen. 71 71 - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge. 72 - 73 -{{/loesung}} 74 -