Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 20.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 18.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:27
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -49,9 +49,26 @@
49 49  | {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
50 50  
51 51  iv) //Gesuchte Lösung://
52 -Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}=]-\infty; -\sqrt{3}[\: \cup \:]-1; +1[ \:\cup\: ]\sqrt{3}; +\infty[{{/formula}}
52 +Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}=]-\infty; -\sqrt{3}[ \cup ]-1; +1[ \cup ]\sqrt{3}; +\infty[{{/formula}}
53 53  
54 -**Anmerkung:**
54 +5. **Vergleich der Verfahren:**
55 +
56 +- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen.
57 +- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig.
58 +- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus.
59 +
60 +**Didaktisch:**
61 +Die Verfahren stehen in einer natürlichen Lernprogression:
62 +Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen.
63 +
64 +{{/loesung}}
65 +
66 +---
67 +
68 +**Zusammenfassung:**
55 55  - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe.
56 56  - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen.
57 57  - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge.
72 +
73 +{{/loesung}}
74 +