Änderungen von Dokument BPE 4.5 Logarithmus und Exponentialgleichungen
Zuletzt geändert von Holger Engels am 2025/03/13 07:51
Von Version 100.1
bearbeitet von Dirk Tebbe
am 2025/02/26 14:16
am 2025/02/26 14:16
Änderungskommentar:
Neuen Anhang 2^xund8.ggb hochladen
Auf Version 103.2
bearbeitet von Martina Wagner
am 2025/02/26 14:31
am 2025/02/26 14:31
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. dirktebbe1 +XWiki.martinawagner - Inhalt
-
... ... @@ -94,8 +94,8 @@ 94 94 |Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution 95 95 |{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}} 96 96 |{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}} 97 -|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|2 98 -|{{formula}}f _4(x){{/formula}}|2|197 +|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}} 98 +|{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}} 99 99 {{/aufgabe}} 100 100 101 101 Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}