Zuletzt geändert von Holger Engels am 2025/03/13 07:51

Von Version 123.3
bearbeitet von Holger Engels
am 2025/03/03 21:24
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 129.3
bearbeitet von Holger Engels
am 2025/03/13 07:51
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -7,6 +7,7 @@
7 7  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren
9 9  
10 +{{lehrende}}
10 10  Aufgaben:
11 11  – Logarithmus: graphisches Ermitteln vs. Operator
12 12  Lösen von Exponentialgleichungen:
... ... @@ -17,9 +17,10 @@
17 17  - Näherungslösungen
18 18  
19 19  Gleichungen:
20 -x+y = e --> y = e - x
21 -x*y = e --> y = e / x
22 -e^y = x --> y = ln(x)
21 +{{formula}}x\pm y = e \Rightarrow y = e \mp x{{/formula}}
22 +{{formula}}x*y = e \Rightarrow y = e / x{{/formula}}
23 +{{formula}}e^y = x \Rightarrow y = \ln(x){{/formula}}
24 +{{/lehrende}}
23 23  
24 24  {{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
25 25  Nenne jeweils eine passende Gleichung:
... ... @@ -38,7 +38,7 @@
38 38  
39 39  {{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}}
40 40  Ordne zu:
41 -(% class="border slim " %)
43 +(% class="border slim" %)
42 42  |Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder
43 43  |{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \sqrt[3]{8} {{/formula}}|(((
44 44  |x|0|1|2|3
... ... @@ -50,11 +50,11 @@
50 50  )))|[[image:2^-xund8.svg||width="200px"]]
51 51  |{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |(((
52 52  |x|0|1|2|3
53 -|y|1|\frac{1}{2}|\frac{1}{4}|\frac{1}{8}
55 +|y|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}}|{{formula}}\frac{1}{8}{{/formula}}
54 54  )))|[[image:x^3und8.svg||width="200px"]]
55 55  |{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = x = \frac{1}{\sqrt[3]{8}} {{/formula}} |(((
56 56  |x|0|1|2|3
57 -|y|n.d.|1|\frac{1}{8}|\frac{1}{27}
59 +|y|n.d.|1|{{formula}}\frac{1}{8}{{/formula}}|{{formula}}\frac{1}{27}{{/formula}}
58 58  )))|[[image:x^-3und8.svg||width="200px"]]
59 59  {{/aufgabe}}
60 60  
... ... @@ -81,8 +81,149 @@
81 81  {{/aufgabe}}
82 82  
83 83  {{aufgabe id="Gleichungen gemeinsamer Form" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
84 -(% class="abc" %)
85 -Aufgabe als Dokument im Anhang ‚unten‘.
86 +Die Gleichungen sehen auf den ersten Blick unterschiedlich aus, weisen aber ähnliche Strukturen auf und können alle mithilfe der Substitution gelöst werden. Selbstverständlich gibt es für manche Teilaufgaben auch andere Lösungswege ohne Substitution.
87 +(%class="abc"%)
88 +1. (((
89 +(%class="border slim"%)
90 +|(%align="center" width="160"%){{formula}}x^{-2}-4x^{-1}+3=0{{/formula}}
91 +
92 +{{formula}}u:=\_\_\_{{/formula}}
93 +⬊|(%align="center" width="160"%){{formula}}x^{2e}-4x^e+3=0{{/formula}}
94 +
95 +{{formula}}u:=\_\_\_{{/formula}}
96 +🠗|(%align="center" width="160"%){{formula}}e^{2x}-4e^x+3=0{{/formula}}
97 +
98 +{{formula}}u:=\_\_\_{{/formula}}
99 +⬋
100 +||(%align="center"%){{formula}}u^2-4u+3=0{{/formula}}
101 +(((
102 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
103 +|
104 +
105 +
106 +)))
107 +
108 +{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
109 +|(%align="center"%)(((⬋
110 +{{formula}}\_\_\_:=u{{/formula}}
111 +(((
112 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
113 +|
114 +
115 +
116 +)))
117 +)))|(%align="center"%)(((🠗
118 +{{formula}}\_\_\_:=u{{/formula}}
119 +(((
120 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
121 +|
122 +
123 +
124 +)))
125 +)))|(%align="center"%)(((⬊
126 +{{formula}}\_\_\_:=u{{/formula}}
127 +(((
128 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
129 +|
130 +
131 +
132 +)))
133 +)))
134 +)))
135 +1. (((
136 +(%class="border slim"%)
137 +|(%align="center" width="160"%){{formula}}x^{-2}-3x^{-1}=0{{/formula}}
138 +
139 +{{formula}}u:=\_\_\_{{/formula}}
140 +⬊|(%align="center" width="160"%){{formula}}x^{2e}-3x^e=0{{/formula}}
141 +
142 +{{formula}}u:=\_\_\_{{/formula}}
143 +🠗|(%align="center" width="160"%){{formula}}e^{2x}-3e^x=0{{/formula}}
144 +
145 +{{formula}}u:=\_\_\_{{/formula}}
146 +⬋
147 +||(%align="center"%){{formula}}u^2-3u=0{{/formula}}
148 +(((
149 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
150 +|
151 +
152 +
153 +)))
154 +
155 +{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
156 +|(%align="center"%)(((⬋
157 +{{formula}}\_\_\_:=u{{/formula}}
158 +(((
159 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
160 +|
161 +
162 +
163 +)))
164 +)))|(%align="center"%)(((🠗
165 +{{formula}}\_\_\_:=u{{/formula}}
166 +(((
167 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
168 +|
169 +
170 +
171 +)))
172 +)))|(%align="center"%)(((⬊
173 +{{formula}}\_\_\_:=u{{/formula}}
174 +(((
175 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
176 +|
177 +
178 +
179 +)))
180 +)))
181 +)))
182 +1. (((
183 +(%class="border slim"%)
184 +|(%align="center" width="160"%){{formula}}x^{-2}-2x^{-1}+3=0{{/formula}}
185 +
186 +{{formula}}u:=\_\_\_{{/formula}}
187 +⬊|(%align="center" width="160"%){{formula}}x^{2e}-2x^e+3=0{{/formula}}
188 +
189 +{{formula}}u:=\_\_\_{{/formula}}
190 +🠗|(%align="center" width="160"%){{formula}}e^{2x}-2e^x+3=0{{/formula}}
191 +
192 +{{formula}}u:=\_\_\_{{/formula}}
193 +⬋
194 +||(%align="center"%){{formula}}u^2-2u+3=0{{/formula}}
195 +(((
196 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
197 +|
198 +
199 +
200 +)))
201 +
202 +{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
203 +|(%align="center"%)(((⬋
204 +{{formula}}\_\_\_:=u{{/formula}}
205 +(((
206 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
207 +|
208 +
209 +
210 +)))
211 +)))|(%align="center"%)(((🠗
212 +{{formula}}\_\_\_:=u{{/formula}}
213 +(((
214 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
215 +|
216 +
217 +
218 +)))
219 +)))|(%align="center"%)(((⬊
220 +{{formula}}\_\_\_:=u{{/formula}}
221 +(((
222 +(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
223 +|
224 +
225 +
226 +)))
227 +)))
228 +)))
86 86  {{/aufgabe}}
87 87  
88 88  {{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
... ... @@ -89,7 +89,7 @@
89 89  Bestimme die Lösung der folgenden Gleichungen:
90 90  
91 91  (% class="border slim " %)
92 -|Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution
235 +|Typ 1 (Umkehroperationen)|Typ 2 (Ausklammern)|Typ 3 (Substitution)
93 93  |{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}}
94 94  |{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}}
95 95  |{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}}