Zuletzt geändert von akukin am 2025/08/11 14:43

Von Version 174.1
bearbeitet von Holger Engels
am 2025/05/26 08:44
Änderungskommentar: Löschung des Anhangs 2^-xund8.ggb
Auf Version 117.1
bearbeitet von Elke Hallmann
am 2025/02/26 14:34
Änderungskommentar: Neuen Anhang x^-3und8.ggb hochladen

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.elkehallmanngmxde
Inhalt
... ... @@ -7,37 +7,59 @@
7 7  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren
9 9  
10 -{{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}}
11 -Bestimme die Lösungsmenge der Exponentialgleichung:
12 -(% class="abc" %)
10 +Aufgaben:
11 +– Logarithmus: graphisches Ermitteln vs. Operator
12 +Lösen von Exponentialgleichungen:
13 +– Vokabelheft für Umkehroperationen
14 +– Umkehrung der Rechenoperationen (Logarithmieren!) zzgl. Grundrechenarten
15 +– Faktorisierung durch Ausklammern und Satz vom Nullprodukt zzgl. Grundrechenarten
16 +– Substitution (abc-Formel, pq-Formel, Typ I) zzgl. Grundrechenarten
17 +- Näherungslösungen
13 13  
14 -1. {{formula}} e^x=3 {{/formula}}
15 -1. {{formula}} 2e^x-4=8 {{/formula}}
16 -1. {{formula}} 2e^{-0.5x}=6{{/formula}}
17 -1. {{formula}} e^x=-5 {{/formula}}
18 -1. {{formula}} 4\cdot 5^x=100 {{/formula}}
19 -{{/aufgabe}}
19 +Gleichungen:
20 +x+y = e --> y = e - x
21 +x*y = e --> y = e / x
22 +e^y = x --> y = ln(x)
20 20  
21 -{{aufgabe id="Exponentialgleichungen (Satz vom Nullprodukt)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
22 -Bestimme die Lösungsmenge der Gleichung:
24 +{{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
25 +Nenne jeweils eine passende Gleichung:
26 +
27 +Die Gleichung kann ich nach x auflösen, indem ich{{formula}} \ldots {{/formula}}
23 23  (% class="abc" %)
24 -1. {{formula}} 2x-x^{2}=0 {{/formula}}
25 -1. {{formula}} 2e^x-e^{2x}=0 {{/formula}}
26 -1. {{formula}} \frac{1}{3}e^x=e^{2x} {{/formula}}
27 -1. {{formula}} 3e^{-x}=2e^{2x} {{/formula}}
28 -1. {{formula}} 2x^e=x^{2e} {{/formula}}
29 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
30 +1. {{formula}} \ldots {{/formula}} von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
31 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
29 29  {{/aufgabe}}
30 30  
31 -{{aufgabe id="Exponentialgleichungen (Substitution)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
32 -Bestimme die Lösungsmenge der Gleichung:
33 -(% class="abc" %)
34 -1. {{formula}} x^{2}-2x-3=0 {{/formula}}
35 -1. {{formula}} e^{2x}-2e^x-3=0 {{/formula}}
36 -1. {{formula}} e^x-2e^{\frac{1}{2}x}-3=0 {{/formula}}
37 -1. {{formula}} e^x-2-\frac{8}{e^x}}=0 {{/formula}}
38 -1. {{formula}} 2e^{4x}=e^{2x}+3 {{/formula}}
34 +{{aufgabe id="Gleichungen aufstellen II" afb="I" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
35 +Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll:
36 +{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}
39 39  {{/aufgabe}}
40 40  
39 +{{aufgabe id="Darstellungen zuordnen" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
40 +Ordne zu:
41 +(% class="border slim " %)
42 +|Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder
43 +|{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \sqrt[3]{8} {{/formula}}|(((
44 +|x|0|1|2|3
45 +|y|1|2|4|8
46 +)))|[[image:2^xund8.svg||width="200px"]]
47 +|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = -\log_{2}(8) {{/formula}} |(((
48 +|x|0|1|2|3
49 +|y|0|1|8|27
50 +)))|[[image:2^-xund8.svg||width="200px"]]
51 +|{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |(((
52 +|x|0|1|2|3
53 +|y|0|1|8|27
54 +)))|[[image:x^3und8.svg||width="200px"]]
55 +|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = x = \frac{1}{\sqrt[3]{8}} {{/formula}} |(((
56 +|x|0|1|2|3
57 +|y|0|1|8|27
58 +)))|[[image:x^-3und8.svg||width="200px"]]
59 +
60 +
61 +{{/aufgabe}}
62 +
41 41  {{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
42 42  Ordne (ohne WTR!) die Terme ihren Werten gemäß den Kästchen über dem Zahlenstrahl zu. Trage dafür die jeweiligen Buchstaben in die Kästchen ein.
43 43  
... ... @@ -55,251 +55,82 @@
55 55  1. {{formula}} \log_{10}(10) {{/formula}}
56 56  {{/aufgabe}}
57 57  
58 -{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="I" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
80 +{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
59 59  (% class="abc" %)
60 -Ermittle die Lösung der Gleichung {{formula}} e^x = 5 {{/formula}} graphisch und rechnerisch.
82 +Ermittle die Lösung der Gleichung {{formula}} 2^x = 5 {{/formula}} graphisch und rechnerisch.
61 61  {{/aufgabe}}
62 62  
63 -{{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
64 -Nenne jeweils eine passende Gleichung:
65 -
66 -Die Gleichung kann ich nach x auflösen, indem ich …
85 +{{aufgabe id="Exponentialgleichungen Lösbarkeit (graphisch versus rechnerisch)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
67 67  (% class="abc" %)
68 -1. … die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
69 -1. … von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
70 -1. … die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
87 +Gegeben sind die beiden Gleichungen {{formula}} x^2 = a {{/formula}} und {{formula}} 2^x = a {{/formula}} für {{formula}} a \in \mathbb{R} {{/formula}}. Untersuche ihre Lösbarkeit in Abhängigkeit von {{formula}} a {{/formula}}.
88 +{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:. {{/formula}}
71 71  {{/aufgabe}}
72 72  
73 -{{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}}
74 -Ordne zu:
75 -(% class="border slim" %)
76 -|Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder
77 -|{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \frac{1}{\sqrt[3]{8}} {{/formula}}|(((
78 -|x|0|1|2|3
79 -|y|1|2|4|8
80 -)))|[[image:2^xund8.svg||width="200px"]]
81 -|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = -\log_{2}(8) {{/formula}} |(((
82 -|x|0|1|2|3
83 -|y|n.d.|1|{{formula}}\frac{1}{8}{{/formula}}|{{formula}}\frac{1}{27}{{/formula}}
84 -)))|[[image:2^-xund8.svg||width="200px"]]
85 -|{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |(((
86 -|x|0|1|2|3
87 -|y|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}}|{{formula}}\frac{1}{8}{{/formula}}
88 -)))|[[image:x^-3und8.svg||width="200px"]]
89 -{{/aufgabe}}
90 90  
91 -{{aufgabe id="Gleichungen gemeinsamer Form" afb="III" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
92 -Die Gleichungen sehen auf den ersten Blick unterschiedlich aus, weisen aber ähnliche Strukturen auf und können alle mithilfe der Substitution gelöst werden. Selbstverständlich gibt es für manche Teilaufgaben auch andere Lösungswege ohne Substitution.
93 -(%class="abc"%)
94 -1. (((
95 -(%class="border slim"%)
96 -|(%align="center" width="160"%){{formula}}e^{2x}-4e^x+3=0{{/formula}}
97 -
98 -{{formula}}u:=\_\_\_{{/formula}}
99 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-4x^e+3=0{{/formula}}
100 -
101 -{{formula}}u:=\_\_\_{{/formula}}
102 -🠗|(%align="center" width="160"%){{formula}}x^{-2}-4x^{-1}+3=0{{/formula}}
103 -
104 -{{formula}}u:=\_\_\_{{/formula}}
105 -⬋
106 -||(%align="center"%){{formula}}u^2-4u+3=0{{/formula}}
107 -(((
108 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
109 -|
110 -
111 -
112 -)))
113 -
114 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
115 -|(%align="center"%)(((⬋
116 -{{formula}}\_\_\_:=u{{/formula}}
117 -(((
118 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
119 -|
120 -
121 -
122 -)))
123 -)))|(%align="center"%)(((🠗
124 -{{formula}}\_\_\_:=u{{/formula}}
125 -(((
126 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
127 -|
128 -
129 -
130 -)))
131 -)))|(%align="center"%)(((⬊
132 -{{formula}}\_\_\_:=u{{/formula}}
133 -(((
134 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
135 -|
136 -
137 -
138 -)))
139 -)))
140 -)))
141 -1. (((
142 -(%class="border slim"%)
143 -|(%align="center" width="160"%){{formula}}x^{-2}-3x^{-1}=0{{/formula}}
144 -
145 -{{formula}}u:=\_\_\_{{/formula}}
146 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-3x^e=0{{/formula}}
147 -
148 -{{formula}}u:=\_\_\_{{/formula}}
149 -🠗|(%align="center" width="160"%){{formula}}e^{2x}-3e^x=0{{/formula}}
150 -
151 -{{formula}}u:=\_\_\_{{/formula}}
152 -⬋
153 -||(%align="center"%){{formula}}u^2-3u=0{{/formula}}
154 -(((
155 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
156 -|
157 -
158 -
159 -)))
160 -
161 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
162 -|(%align="center"%)(((⬋
163 -{{formula}}\_\_\_:=u{{/formula}}
164 -(((
165 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
166 -|
167 -
168 -
169 -)))
170 -)))|(%align="center"%)(((🠗
171 -{{formula}}\_\_\_:=u{{/formula}}
172 -(((
173 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
174 -|
175 -
176 -
177 -)))
178 -)))|(%align="center"%)(((⬊
179 -{{formula}}\_\_\_:=u{{/formula}}
180 -(((
181 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
182 -|
183 -
184 -
185 -)))
186 -)))
187 -)))
188 -1. (((
189 -(%class="border slim"%)
190 -|(%align="center" width="160"%){{formula}}x^{-2}-2x^{-1}+3=0{{/formula}}
191 -
192 -{{formula}}u:=\_\_\_{{/formula}}
193 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-2x^e+3=0{{/formula}}
194 -
195 -{{formula}}u:=\_\_\_{{/formula}}
196 -🠗|(%align="center" width="160"%){{formula}}e^{2x}-2e^x+3=0{{/formula}}
197 -
198 -{{formula}}u:=\_\_\_{{/formula}}
199 -⬋
200 -||(%align="center"%){{formula}}u^2-2u+3=0{{/formula}}
201 -(((
202 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
203 -|
204 -
205 -
206 -)))
207 -
208 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
209 -|(%align="center"%)(((⬋
210 -{{formula}}\_\_\_:=u{{/formula}}
211 -(((
212 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
213 -|
214 -
215 -
216 -)))
217 -)))|(%align="center"%)(((🠗
218 -{{formula}}\_\_\_:=u{{/formula}}
219 -(((
220 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
221 -|
222 -
223 -
224 -)))
225 -)))|(%align="center"%)(((⬊
226 -{{formula}}\_\_\_:=u{{/formula}}
227 -(((
228 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
229 -|
230 -
231 -
232 -)))
233 -)))
234 -)))
235 -{{/aufgabe}}
236 -
237 -{{aufgabe id="Gleichungstypen einstudieren" afb="III" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
92 +{{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
238 238  Bestimme die Lösung der folgenden Gleichungen:
239 239  
240 240  (% class="border slim " %)
241 -|Typ 1 (Umkehroperationen)|Typ 2 (Ausklammern)|Typ 3 (Substitution)
96 +|Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution
242 242  |{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}}
243 -|{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2e}+x^e+1 = 0{{/formula}}
98 +|{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}}
244 244  |{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}}
245 245  |{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}}
246 246  {{/aufgabe}}
247 247  
248 -{{aufgabe id=" Exponentialgleichungen ckwärts lösen" afb="II" kompetenzen="K2,K5" quelle="Martina Wagner" lizenz="BY-SA"}}
103 +Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}
249 249  (% class="abc" %)
250 -1. ((({{{ }}}
105 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
106 +1. {{formula}} \ldots {{/formula}} von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
107 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
108 +{{/aufgabe}}
251 251  
252 -{{formula}}
253 -\begin{align*}
254 -\square e^x-2 &= 0\\
255 -\square e^x &=\square\quad \left|:\square\\
256 -e^x &= \square \\
257 -x &= 0
258 -\end{align*}
259 -{{/formula}}
260 -)))
261 -1. ((({{{ }}}
262 262  
263 -{{formula}}
264 -\begin{align*}
265 -e^{2x}-\square e^x &= 0 \\
266 -e^x \cdot (\square-\square) &= 0 \left|\left| \text{ SVNP }
267 -\end{align*}
268 -{{/formula}}
111 +{{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}}
112 +Bestimme die Lösungsmenge der Exponentialgleichung:
113 +(% class="abc" %)
114 +1. {{formula}} 4\cdot 0,5^x=100 {{/formula}}
115 +1. {{formula}} e^x=3 {{/formula}}
116 +1. {{formula}} 2e^x-4=8 {{/formula}}
117 +1. {{formula}} 2e^{-0.5x}=6{{/formula}}
118 +1. {{formula}} e^x=-5 {{/formula}}
119 +{{/aufgabe}}
269 269  
270 -{{formula}}
271 -e^x \neq 0 ~und~ e^x-\square = 0{{/formula}}
272 -{{formula}} e^x=\square {{/formula}}
273 -{{formula}} x =\square {{/formula}}
274 -)))
275 -1. ((({{{ }}}
121 +{{aufgabe id="Exponentialgleichungen (Nullproduktsatz)" afb="II" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
122 +Bestimme die Lösungsmenge der Gleichung:
123 +(% class="abc" %)
124 +1. {{formula}} 2x=x^{2} {{/formula}}
125 +1. {{formula}} 2x^e=x^{2e} {{/formula}}
126 +1. {{formula}} 2e^x=e^{2x} {{/formula}}
127 +{{/aufgabe}}
276 276  
277 -{{formula}}
278 -\begin{align*}
279 -e^{2x}-\square e^x+\square &= 0 \quad \left|\left|\text{ Subst.: } e^x:=\square\\
280 -z^2-\square z + \square &= 0 \quad \left|\left|\text{ Mitternachtsformel/abc-Formel } &
281 -\end{align*}
282 -{{/formula}}
129 +{{aufgabe id="Exponentialgleichungen (Substitution)" afb="III" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
130 +Bestimme die Lösungsmenge der Gleichung:
131 +(% class="abc" %)
132 +1. {{formula}} 2x-3=x^{2} {{/formula}}
133 +1. {{formula}} 2x^e-3=x^{2e} {{/formula}}
134 +1. {{formula}} 2e^x-3=e^{2x} {{/formula}}
135 +1. {{formula}} 2e^{x-3}=e^{2x-3} {{/formula}}
136 +{{/aufgabe}}
283 283  
284 -{{formula}}
285 -\begin{align*}
286 -\Rightarrow z_{1,2}&=\frac{\square\pm\sqrt{\square^2-4\cdot\square\cdot\square}}{2\cdot\square}\\
287 -z_{1,2}&=\frac{\square+\square}{\square}
288 -\end{align*}
289 -{{/formula}}
290 -
291 -{{formula}}
292 -\begin{align*}
293 -&\text{Resubst.: } z:= e^x\\
294 -&e^x=\square \Rightarrow x \approx 0,693147...\\
295 -\end{align*}
296 -{{/formula}}
297 -)))
138 +{{aufgabe id="Exponentialgleichungen" afb="I" kompetenzen="K5" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}}
139 +Bestimme die Lösungsmenge der folgenden Exponentialgleichungen
140 +(% class="abc" %)
141 +1. {{formula}} 3^{x+1}=81 {{/formula}}
142 +1. {{formula}} 5^{2x}=25^{2x+2} {{/formula}}
143 +1. {{formula}} 10^{x}=500{{/formula}}
144 +1. {{formula}} 2^{x+3}=4^{x-1} {{/formula}}
298 298  {{/aufgabe}}
299 299  
300 -{{aufgabe id="Gleichungen aufstellen II" afb="III" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
301 -Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll:
302 -{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}
147 +{{aufgabe id="Exponentialgleichungen graphisch" afb="II" kompetenzen="K4,K6" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}}
148 +Löse mit Hilfe der nebenstehenden Abbildung folgende Exponentialgleichungen näherungsweise. Hinweis: Ordne die linke und die rechte Seite der jeweiligen Gleichung passend den Funktionsgraphen zu.
149 +(% class="abc" %)
150 +1. {{formula}} 2^x=(\frac{3}{4})^x+2 {{/formula}}
151 +1. {{formula}} 7-e^{x-3}=(\frac{3}{4})^x+2 {{/formula}}
152 +1. {{formula}} 2^x=1{,}5^{x+2}-0{,}5 {{/formula}}
153 +1. {{formula}} 7-e^{x-3}=4-\frac{1}{2}\,x {{/formula}}
154 +
155 +[[image:ExpGlei.svg||width="600px"]]
303 303  {{/aufgabe}}
304 304  
305 305  {{seitenreflexion/}}
2^-xund8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Größe
... ... @@ -1,1 +1,0 @@
1 -25.3 KB
Inhalt
... ... @@ -1,1 +1,0 @@
1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="320" height="492"><defs><clipPath id="omPGDIxTrhFg"><path fill="none" stroke="none" d=" M 0 0 L 320 0 L 320 492 L 0 492 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#omPGDIxTrhFg)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="320" height="492" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 5.5 0.5 L 5.5 492.5 M 5.5 0.5 L 5.5 492.5 M 55.5 0.5 L 55.5 492.5 M 105.5 0.5 L 105.5 492.5 M 205.5 0.5 L 205.5 492.5 M 255.5 0.5 L 255.5 492.5 M 305.5 0.5 L 305.5 492.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 15.5 0.5 L 15.5 492.5 M 25.5 0.5 L 25.5 492.5 M 35.5 0.5 L 35.5 492.5 M 45.5 0.5 L 45.5 492.5 M 65.5 0.5 L 65.5 492.5 M 75.5 0.5 L 75.5 492.5 M 85.5 0.5 L 85.5 492.5 M 95.5 0.5 L 95.5 492.5 M 115.5 0.5 L 115.5 492.5 M 125.5 0.5 L 125.5 492.5 M 135.5 0.5 L 135.5 492.5 M 145.5 0.5 L 145.5 492.5 M 165.5 0.5 L 165.5 492.5 M 175.5 0.5 L 175.5 492.5 M 185.5 0.5 L 185.5 492.5 M 195.5 0.5 L 195.5 492.5 M 215.5 0.5 L 215.5 492.5 M 225.5 0.5 L 225.5 492.5 M 235.5 0.5 L 235.5 492.5 M 245.5 0.5 L 245.5 492.5 M 265.5 0.5 L 265.5 492.5 M 275.5 0.5 L 275.5 492.5 M 285.5 0.5 L 285.5 492.5 M 295.5 0.5 L 295.5 492.5 M 315.5 0.5 L 315.5 492.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 39.5 L 320.5 39.5 M 0.5 39.5 L 320.5 39.5 M 0.5 89.5 L 320.5 89.5 M 0.5 139.5 L 320.5 139.5 M 0.5 189.5 L 320.5 189.5 M 0.5 239.5 L 320.5 239.5 M 0.5 289.5 L 320.5 289.5 M 0.5 339.5 L 320.5 339.5 M 0.5 389.5 L 320.5 389.5 M 0.5 489.5 L 320.5 489.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 320.5 9.5 M 0.5 9.5 L 320.5 9.5 M 0.5 19.5 L 320.5 19.5 M 0.5 29.5 L 320.5 29.5 M 0.5 49.5 L 320.5 49.5 M 0.5 59.5 L 320.5 59.5 M 0.5 69.5 L 320.5 69.5 M 0.5 79.5 L 320.5 79.5 M 0.5 99.5 L 320.5 99.5 M 0.5 109.5 L 320.5 109.5 M 0.5 119.5 L 320.5 119.5 M 0.5 129.5 L 320.5 129.5 M 0.5 149.5 L 320.5 149.5 M 0.5 159.5 L 320.5 159.5 M 0.5 169.5 L 320.5 169.5 M 0.5 179.5 L 320.5 179.5 M 0.5 199.5 L 320.5 199.5 M 0.5 209.5 L 320.5 209.5 M 0.5 219.5 L 320.5 219.5 M 0.5 229.5 L 320.5 229.5 M 0.5 249.5 L 320.5 249.5 M 0.5 259.5 L 320.5 259.5 M 0.5 269.5 L 320.5 269.5 M 0.5 279.5 L 320.5 279.5 M 0.5 299.5 L 320.5 299.5 M 0.5 309.5 L 320.5 309.5 M 0.5 319.5 L 320.5 319.5 M 0.5 329.5 L 320.5 329.5 M 0.5 349.5 L 320.5 349.5 M 0.5 359.5 L 320.5 359.5 M 0.5 369.5 L 320.5 369.5 M 0.5 379.5 L 320.5 379.5 M 0.5 399.5 L 320.5 399.5 M 0.5 409.5 L 320.5 409.5 M 0.5 419.5 L 320.5 419.5 M 0.5 429.5 L 320.5 429.5 M 0.5 449.5 L 320.5 449.5 M 0.5 459.5 L 320.5 459.5 M 0.5 469.5 L 320.5 469.5 M 0.5 479.5 L 320.5 479.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 2.5 L 155.5 492.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 151.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 159.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="302" y="435" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">x</text><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 439.5 L 318.5 439.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 435.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 443.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="50" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="100" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="253" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="303" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="160" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">y</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="394" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="344" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="294" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="244" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="194" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="144" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="94" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">7</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="44" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(114,59,134)" paint-order="fill stroke markers" d=" M 1 10.192059721474891 L 1 16.10832914557932 L 1 16.108329145579148 L 2 21.943147540224913 L 2 21.943147540224743 L 3 27.697636265803794 L 3 27.697636265803624 L 4 33.3729012446081 L 4 33.372901244607874 L 5 38.97003317337072 L 5 38.97003317337055 L 6 44.490107732880176 L 6 44.49010773288006 L 7 49.9341857947104 L 7 49.93418579471029 L 8 55.303313625102135 L 8 55.30331362510202 L 9 60.59852308603996 L 9 60.59852308603985 L 10 65.82083183355951 L 10 65.8208318335594 L 11 70.97124351332502 L 11 70.97124351332491 L 12 76.05074795351436 L 12 76.05074795351425 L 13 81.06032135504825 L 13 81.06032135504819 L 14 86.0009264792011 L 14 86.00092647920098 L 15 90.87351283262814 L 15 90.87351283262802 L 16 95.67901684984582 L 16 95.67901684984571 L 17 100.41836207320006 L 17 100.41836207319994 L 18 105.09245933035652 L 18 105.0924593303564 L 19 109.7022069093469 L 19 109.70220690934684 L 20 114.24849073120629 L 20 114.24849073120623 L 21 118.73218452023309 L 21 118.73218452023303 L 22 123.1541499719051 L 22 123.15414997190504 L 23 127.51523691848377 L 23 127.51523691848371 L 24 131.81628349233875 L 24 131.81628349233864 L 25 136.0581162870236 L 25 136.0581162870235 L 26 140.24155051613428 L 26 140.24155051613417 L 27 144.36739016998013 L 27 144.36739016998007 L 27.999999999999986 148.43642817009857 L 27.999999999999986 148.43642817009845 L 28.999999999999986 152.44944652164156 L 28.999999999999986 152.44944652164145 L 30 156.40721646366535 L 30 156.40721646366524 L 31 160.31049861734994 L 31 160.31049861734982 L 32 164.160043132179 L 32 164.16004313217888 L 33 167.9565898301064 L 33 167.95658983010634 L 34 171.70086834773872 L 34 171.70086834773866 L 35 175.3935982765596 L 35 175.39359827655954 L 36 179.03548930122417 L 36 179.03548930122412 L 37.000000000000014 182.62724133594924 L 37.000000000000014 182.62724133594918 L 37.999999999999986 186.1695446590256 L 37.999999999999986 186.1695446590255 L 38.999999999999986 189.66308004547906 L 38.999999999999986 189.66308004547895 L 39.999999999999986 193.1085188979043 L 39.999999999999986 193.10851889790422 L 41 196.5065233754982 L 41 196.5065233754981 L 42 199.85774652131613 L 42 199.85774652131605 L 43 203.16283238777686 L 43 203.16283238777677 L 44 206.42241616043924 L 44 206.42241616043916 L 45 209.63712428007472 L 45 209.63712428007463 L 46 212.80757456305957 L 46 212.8075745630595 L 47 215.9343763201095 L 47 215.9343763201094 L 47.999999999999986 219.01813047337933 L 47.999999999999986 219.01813047337924 L 48.999999999999986 222.05942967195134 L 48.999999999999986 222.05942967195125 L 49.999999999999986 225.0588584057325 L 49.999999999999986 225.05885840573242 L 50.999999999999986 228.01699311778458 L 50.999999999999986 228.0169931177845 L 52 230.93440231510738 L 52 230.9344023151073 L 53 233.81164667789687 L 53 233.8116466778968 L 54 236.649279167299 L 54 236.64927916729891 L 55 239.44784513168034 L 55 239.44784513168022 L 56 242.20788241143512 L 56 242.20788241143507 L 57 244.9299214423502 L 57 244.92992144235015 L 58 247.6144853575461 L 58 247.61448535754604 L 58.999999999999986 250.26209008801496 L 58.999999999999986 250.2620900880149 L 60 252.87324446177473 L 60 252.8732444617747 L 61 255.4484503016575 L 61 255.44845030165746 L 61.999999999999986 257.98820252175216 L 61.999999999999986 257.9882025217521 L 63 260.4929892225191 L 63 260.4929892225191 L 64 262.9632917845955 L 64 262.9632917845955 L 65 265.399584961309 L 65 265.39958496130896 L 66 267.80233696991786 L 66 267.80233696991786 L 66.99999999999999 270.17200958159503 L 66.99999999999999 270.17200958159503 L 68 272.5090582101733 L 68 272.50905821017324 L 69 274.8139319996685 L 69 274.8139319996684 L 70 277.0870739105982 L 70 277.0870739105981 L 71 279.3289208051116 L 71 279.3289208051116 L 71.99999999999999 281.5399035309475 L 71.99999999999999 281.5399035309475 L 72.99999999999999 283.7204470042369 L 72.99999999999999 283.7204470042368 L 74 285.8709702911644 L 74 285.8709702911643 L 75 287.99188668850684 L 75 287.9918866885067 L 76 290.08360380306215 L 76 290.08360380306215 L 77 292.1465236299851 L 77 292.14652362998504 L 77.99999999999999 294.1810426300443 L 77.99999999999999 294.18104263004426 L 79 296.1875518058158 L 79 296.18755180581576 L 80 298.1664367768277 L 80 298.16643677682765 L 81 300.11807785367 L 81 300.11807785367 L 82 302.04285011108453 L 82 302.0428501110845 L 82.99999999999999 303.94112346004823 L 82.99999999999999 303.9411234600482 L 83.99999999999999 305.8132627188644 L 83.99999999999999 305.81326271886434 L 85 307.65962768327483 L 85 307.6596276832748 L 86 309.4805731956071 L 86 309.4805731956071 L 87 311.2764492129696 L 87 311.2764492129696 L 88 313.0476008745079 L 88 313.04760087450785 L 88.99999999999999 314.7943685677346 L 88.99999999999999 314.7943685677345 L 90 316.5170879939472 L 90 316.51708799394714 L 91 318.21609023274414 L 91 318.2160902327441 L 92 319.8917018056531 L 92 319.89170180565304 L 93 321.5442447388835 L 93 321.54424473888344 L 94 323.1740366252147 L 94 323.1740366252146 L 95 324.7813906850324 L 95 324.78139068503236 L 96 326.3666158265248 L 96 326.3666158265248 L 97 327.93001670504975 L 97 327.93001670504975 L 98 329.47189378168474 L 98 329.4718937816847 L 99 330.99254338097074 L 99 330.9925433809707 L 100 332.49225774786134 L 100 332.4922577478613 L 101 333.97132510388735 L 101 333.97132510388735 L 102 335.4300297025488 L 102 335.4300297025487 L 103 336.86865188394347 L 103 336.86865188394347 L 103.99999999999999 338.28746812864455 L 103.99999999999999 338.2874681286445 L 105 339.6867511108352 L 105 339.6867511108352 L 106 341.06676975071264 L 106 341.0667697507126 L 107 342.4277892661702 L 107 342.4277892661701 L 108 343.7700712237681 L 108 343.77007122376807 L 109 345.09387358900256 L 109 345.09387358900256 L 110 346.3994507758824 L 110 346.3994507758824 L 111 347.6870536958238 L 111 347.6870536958238 L 112 348.95692980587114 L 112 348.95692980587114 L 113 350.20932315625464 L 113 350.20932315625464 L 114 351.44447443729285 L 114 351.4444744372928 L 115 352.6626210256496 L 115 352.66262102564957 L 116 353.863997029954 L 116 353.863997029954 L 117 355.0488333357926 L 117 355.0488333357926 L 118 356.21735765008174 L 118 356.2173576500817 L 119 357.36979454482935 L 119 357.3697945448293 L 120 358.5063655002942 L 120 358.5063655002941 L 121 359.6272889475509 L 121 359.6272889475508 L 122 360.73278031046885 L 122 360.73278031046885 L 123 361.82305204711355 L 123 361.8230520471135 L 124 362.89831369057725 L 124 362.89831369057725 L 125 363.9587718892485 L 125 363.95877188924845 L 126 365.00463044652616 L 126 365.0046304465261 L 126.99999999999999 366.0360903599876 L 126.99999999999999 366.0360903599876 L 128 367.05334986001725 L 128 367.0533498600172 L 129 368.056604447903 L 129 368.056604447903 L 130 369.04604693340895 L 130 369.0460469334089 L 131 370.0218674718301 L 131 370.0218674718301 L 132 370.9842536005374 L 132 370.98425360053733 L 133 371.93339027501924 L 133 371.9333902750192 L 134 372.8694599044273 L 134 372.86945990442723 L 135 373.7926423866325 L 135 373.79264238663245 L 136 374.70311514279865 L 136 374.70311514279865 L 137 375.60105315147996 L 137 375.6010531514799 L 138 376.48662898224904 L 138 376.486628982249 L 139 377.3600128288624 L 139 377.36001282886235 L 140 378.2213725419687 L 140 378.22137254196866 L 141 379.07087366136716 L 141 379.07087366136716 L 142 379.90867944782167 L 142 379.9086794478216 L 143 380.7349509144368 L 143 380.7349509144368 L 144 381.54984685760246 L 144 381.5498468576024 L 145 382.3535238875113 L 145 382.3535238875113 L 146 383.1461364582575 L 146 383.1461364582575 L 147 383.92783689752 L 147 383.92783689751997 L 148 384.6987754358375 L 148 384.69877543583743 L 149 385.4591002354805 L 149 385.45910023548043 L 150 386.20895741892576 L 150 386.2089574189257 L 151 386.94849109693877 L 151 386.94849109693877 L 152 387.6778433962695 L 152 387.67784339626945 L 153 388.3971544869669 L 153 388.3971544869668 L 154 389.1065626093174 L 154 389.1065626093174 L 155 389.80620410041274 L 155 389.8062041004127 L 156 390.4962134203514 L 156 390.4962134203514 L 157 391.1767231780802 L 157 391.1767231780802 L 158 391.84786415687915 L 158 391.84786415687915 L 159 392.50976533949637 L 159 392.50976533949637 L 160 393.1625539329363 L 160 393.1625539329363 L 161 393.806355392907 L 161 393.806355392907 L 162 394.44129344793066 L 162 394.44129344793066 L 163 395.0674901231224 L 163 395.0674901231224 L 164 395.68506576364155 L 164 395.68506576364155 L 165 396.2941390578199 L 165 396.2941390578199 L 166 396.8948270599721 L 166 396.8948270599721 L 167 397.4872452128914 L 167 397.4872452128914 L 168 398.071507370036 L 168 398.071507370036 L 169 398.64772581740976 L 169 398.64772581740976 L 170 399.2160112951422 L 170 399.2160112951422 L 171 399.77647301877056 L 171 399.77647301877056 L 172 400.32921870022955 L 172 400.32921870022955 L 173 400.8743545685519 L 173 400.8743545685519 L 174 401.41198539028375 L 174 401.41198539028375 L 175 401.94221448961935 L 175 401.94221448961935 L 176 402.4651437682582 L 176 402.4651437682582 L 177 402.98087372498895 L 177 402.9808737249889 L 178 403.48950347500374 L 178 403.48950347500374 L 179 403.9911307689466 L 179 403.9911307689466 L 180 404.4858520116996 L 180 404.4858520116996 L 181 404.97376228091014 L 181 404.97376228091014 L 182 405.4549553452638 L 182 405.4549553452638 L 183 405.92952368250474 L 183 405.92952368250474 L 184 406.39755849720876 L 184 406.39755849720876 L 185 406.8591497383114 L 185 406.8591497383114 L 186 407.3143861163944 L 186 407.3143861163944 L 187 407.76335512073507 L 187 407.76335512073507 L 188 408.2061430361196 L 188 408.2061430361196 L 189 408.6428349594263 L 189 408.6428349594263 L 190 409.0735148159795 L 190 409.0735148159795 L 191 409.4982653756787 L 191 409.49826537567867 L 192 409.9171682689059 L 192 409.9171682689059 L 193 410.33030400221355 L 193 410.33030400221355 L 194 410.7377519737963 L 194 410.7377519737963 L 195 411.1395904887508 L 195 411.13959048875074 L 196 411.5358967741239 L 196 411.5358967741239 L 197 411.9267469937551 L 197 411.9267469937551 L 198 412.31221626291386 L 198 412.31221626291386 L 199 412.69237866273534 L 199 412.69237866273534 L 200 413.067307254458 L 200 413.067307254458 L 201 413.4370740934645 L 201 413.4370740934645 L 202 413.80175024312985 L 202 413.80175024312985 L 203 414.16140578847853 L 203 414.16140578847853 L 204 414.51610984965384 L 204 414.5161098496538 L 205 414.86593059520146 L 205 414.86593059520146 L 206 415.21093525517085 L 206 415.21093525517085 L 207 415.5511901340352 L 207 415.5511901340352 L 208 415.8867606234347 L 208 415.8867606234347 L 209 416.2177112147433 L 209 416.2177112147433 L 209.99999999999997 416.5441055114633 L 209.99999999999997 416.5441055114633 L 211 416.86600624144864 L 211 416.86600624144864 L 212 417.1834752689605 L 212 417.1834752689605 L 213 417.49657360655635 L 213 417.49657360655635 L 214 417.8053614268159 L 214 417.80536142681586 L 215 418.1098980739051 L 215 418.1098980739051 L 216 418.41024207498117 L 216 418.41024207498117 L 217 418.70645115144083 L 217 418.70645115144083 L 218 418.99858223001314 L 218 418.9985822300131 L 219 419.28669145370003 L 219 419.28669145370003 L 220 419.5708341925662 L 220 419.5708341925662 L 221 419.8510650543804 L 221 419.8510650543804 L 222 420.1274378951099 L 222 420.1274378951099 L 223 420.4000058292711 L 223 420.4000058292711 L 224 420.668821240137 L 224 420.668821240137 L 225 420.9339357898048 L 225 420.9339357898048 L 226 421.1954004291242 L 226 421.1954004291242 L 227 421.4532654074896 L 227 421.4532654074896 L 228 421.707580282497 L 228 421.707580282497 L 229 421.95839392946846 L 229 421.95839392946846 L 230 422.2057545508449 L 230 422.2057545508449 L 231 422.4497096854502 L 231 422.4497096854502 L 232 422.69030621762704 L 232 422.69030621762704 L 233 422.9275903862475 L 233 422.9275903862475 L 234 423.1616077935995 L 234 423.1616077935995 L 235 423.3924034141508 L 235 423.3924034141508 L 236 423.62002160319236 L 236 423.62002160319236 L 237 423.84450610536265 L 237 423.84450610536265 L 238 424.0659000630549 L 238 424.0659000630549 L 239 424.2842460247083 L 239 424.2842460247083 L 240 424.4995859529849 L 240 424.4995859529849 L 241 424.7119612328345 L 241 424.7119612328345 L 242 424.9214126794481 L 242 424.9214126794481 L 243 425.1279805461019 L 243 425.1279805461019 L 244 425.3317045318933 L 244 425.3317045318933 L 245 425.5326237893705 L 245 425.5326237893705 L 246 425.7307769320571 L 246 425.7307769320571 L 247 425.92620204187267 L 247 425.92620204187267 L 248 426.11893667645205 L 248 426.11893667645205 L 249 426.3090178763628 L 249 426.3090178763628 L 250 426.49648217222415 L 250 426.49648217222415 L 251 426.6813655917274 L 251 426.6813655917274 L 252 426.86370366656007 L 252 426.86370366656007 L 253 427.0435314392344 L 253 427.0435314392344 L 254 427.22088346982207 L 254 427.22088346982207 L 255 427.3957938425959 L 255 427.3957938425959 L 256 427.5682961725806 L 256 427.5682961725806 L 257 427.73842361201275 L 257 427.73842361201275 L 258 427.9062088567125 L 258 427.9062088567125 L 259 428.0716841523668 L 259 428.0716841523668 L 260 428.2348813007268 L 260 428.2348813007268 L 261 428.39583166571947 L 261 428.39583166571947 L 262 428.5545661794754 L 262 428.5545661794754 L 263 428.7111153482733 L 263 428.7111153482733 L 264 428.8655092584031 L 264 428.8655092584031 L 265 429.01777758194766 L 265 429.01777758194766 L 266 429.16794958248573 L 266 429.16794958248573 L 267 429.31605412071553 L 267 429.31605412071553 L 268 429.4621196600017 L 268 429.4621196600017 L 269 429.60617427184513 L 269 429.60617427184513 L 270 429.74824564127823 L 270 429.74824564127823 L 271 429.8883610721853 L 271 429.8883610721853 L 272 430.0265474925501 L 272 430.0265474925501 L 273 430.1628314596307 L 273 430.1628314596307 L 274 430.2972391650636 L 274 430.2972391650636 L 275 430.42979643989753 L 275 430.42979643989753 L 276 430.56052875955726 L 276 430.56052875955726 L 277 430.6894612487399 L 277 430.6894612487399 L 278 430.81661868624366 L 278 430.81661868624366 L 279 430.9420255097294 L 279 430.9420255097294 L 280 431.0657058204176 L 280 431.0657058204176 L 281 431.18768338772026 L 281 431.18768338772026 L 282 431.30798165380867 L 282 431.30798165380867 L 283 431.4266237381189 L 283 431.4266237381189 L 284 431.5436324417949 L 284 431.5436324417949 L 285 431.6590302520706 L 285 431.6590302520705 L 286 431.7728393465913 L 286 431.7728393465913 L 287 431.8850815976765 L 287 431.8850815976765 L 288 431.99577857652264 L 288 431.99577857652264 L 289 432.1049515573493 L 289 432.1049515573493 L 290 432.21262152148756 L 290 432.21262152148756 L 291 432.3188091614124 L 291 432.3188091614124 L 292 432.4235348847192 L 292 432.4235348847192 L 293 432.5268188180461 L 293 432.5268188180461 L 294 432.6286808109418 L 294 432.6286808109418 L 295 432.7291404396804 L 295 432.7291404396804 L 296 432.8282170110237 L 296 432.8282170110237 L 297 432.9259295659315 L 297 432.9259295659315 L 298 433.0222968832212 L 298 433.02229688322114 L 299 433.1173374831765 L 299 433.1173374831765 L 300 433.2110696311072 L 300 433.2110696311072 L 301 433.30351134085885 L 301 433.30351134085885 L 302 433.39468037827515 L 302 433.39468037827515 L 303 433.4845942646123 L 303 433.4845942646123 L 304 433.5732702799062 L 304 433.5732702799062 L 305 433.66072546629306 L 305 433.66072546629306 L 306 433.7469766312854 L 306 433.7469766312854 L 307 433.8320403510015 L 307 433.8320403510015 L 308 433.9159329733514 L 308 433.9159329733514 L 309 433.9986706211785 L 309 433.9986706211785 L 310 434.08026919535854 L 310 434.08026919535854 L 311 434.1607443778549 L 311 434.1607443778549 L 312 434.24011163473284 L 312 434.24011163473284 L 313 434.3183862191318 L 313 434.3183862191318 L 314 434.3955831741967 L 314 434.3955831741967 L 315 434.471717335969 L 315 434.471717335969 L 316 434.546803336238 L 316 434.546803336238 L 317 434.6208556053529 L 317 434.6208556053529 L 318 434.693888374996 L 318 434.693888374996 L 319 434.7659156809177 L 319 434.7659156809177 L 320 434.83695136563426" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(114,59,134)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="31" y="122" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(114,59,134)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="42" y="129" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f</text><path fill="none" stroke="rgb(176,0,32)" paint-order="fill stroke markers" d=" M -5 39.92565708998899 L 325 39.92565708998899" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="59" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="71" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">g</text></g></g></svg>
2^xund8.svg
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,1 @@
1 -31.1 KB
1 +50.3 KB
Inhalt
BPE 4.5 A Gleichungen Gemeinsamer Form.pdf
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -562.4 KB
Inhalt
Darstellungen zuordnen.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Größe
... ... @@ -1,1 +1,0 @@
1 -77.1 KB
Inhalt
x^-3und8.svg
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,1 @@
1 -22.0 KB
1 +49.9 KB
Inhalt
2^xund8.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +60.0 KB
Inhalt
x^-3und8.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.elkehallmanngmxde
Größe
... ... @@ -1,0 +1,1 @@
1 +70.0 KB
Inhalt
x^3und8.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +61.4 KB
Inhalt