Änderungen von Dokument Lösung Rasenfläche

Zuletzt geändert von Holger Engels am 2024/07/23 08:41

Von Version 1.1
bearbeitet von akukin
am 2024/01/30 16:32
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 2.1
bearbeitet von akukin
am 2024/01/30 16:36
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,5 +1,7 @@
1 -1. {{formula}}\overline{AE}{{/formula}} und {{formula}}\overline{CD}{{/formula}} sind parallel, weil deren beiden Richtungsvektoren Vielfache von einander sind (das heißt linear abhängig sind), da {{formula}}\overrightarrow{AE}=\left(\begin{array}{c} 0 \\ 15 \\ 0 \end{array}\right) =3 \cdot \left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right)= 3 \cdot \overrightarrow{CD}{{/formula}}.
1 +1. {{formula}}\overline{AE}{{/formula}} und {{formula}}\overline{CD}{{/formula}} sind parallel, weil deren beiden Richtungsvektoren Vielfache von einander sind (das heißt linear abhängig sind), da {{formula}}\overrightarrow{AE}=\left(\begin{array}{c} 0 \\ 15 \\ 0 \end{array}\right) =3 \cdot \left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right)= 3 \cdot \overrightarrow{CD}{{/formula}}
2 2  
3 -{{formula}}\overline{CD}{{/formula}} und {{formula}}\overline{DE}{{/formula}} schließen einen rechten Winkel, da das Skalarprodukt ihrer Richtungsvektoren 0 ergibt: {{formula}}\overrightarrow{CD}\circ \overrightarrow{DE}=\left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right) \circ \left(\begin{array}{c} -12 \\ 0 \\ -1 \end{array}\right)= 0{{/formula}}
3 +{{formula}}\overline{CD}{{/formula}} und {{formula}}\overline{DE}{{/formula}} schließen einen rechten Winkel ein, da das Skalarprodukt ihrer Richtungsvektoren 0 ergibt: {{formula}}\overrightarrow{CD}\circ \overrightarrow{DE}=\left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right) \circ \left(\begin{array}{c} -12 \\ 0 \\ -1 \end{array}\right)= (-12)\cdot 0 + 5 \cdot 0 + 0 \cdot 0 = 0{{/formula}}.
4 4  
5 +1. Ausgehend vom gegebenen Ansatz kann der Inhalt der Rasenfläche berechnet werden. Im Modell kann die Fläche zerlegt werden in ein Rechteck mit den Seitenlängen {{formula}}|\overline{AE}|{{/formula}} und {{formula}}|\overline{DE}|{{/formula}} sowie ein rechtwinkliges Dreieck, dessen Katheten die Längen {{formula}}|\overline{AB}|-|\overline{DE}|{{/formula}} und {{formula}}|\overline{AE}|-|\overline{CD}|{{/formula}} haben.
5 5  
7 +