Zuletzt geändert von akukin am 2024/12/22 18:42

Von Version 108.1
bearbeitet von Martin Rathgeb
am 2024/11/19 16:33
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 109.3
bearbeitet von akukin
am 2024/12/22 18:42
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.akukin
Inhalt
... ... @@ -7,7 +7,7 @@
7 7  [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
8 8  
9 9  {{aufgabe id="Addition und Subtraktion" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}
10 -Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
10 +Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{matrix}1\\3 \end{matrix}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{matrix}-2\\1 \end{matrix}\right){{/formula}}
11 11  Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch:
12 12  (% class="abc" %)
13 13  1. {{formula}}\vec{a}+\vec{b}{{/formula}}
... ... @@ -19,14 +19,14 @@
19 19  {{aufgabe id="Skalare Multiplikation" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
20 20  Zeichne ein zweidimensionales Koordinatensystem. Ermittle jeweils zeichnerisch:
21 21  (% class="abc" %)
22 -1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
23 -1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
22 +1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{matrix}1\\3 \end{matrix}\right){{/formula}}
23 +1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{matrix}-2\\1 \end{matrix}\right){{/formula}}
24 24  {{/aufgabe}}
25 25  
26 26  {{aufgabe id="Linearkombination" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
27 27  Berechne jeweils den Vektor {{formula}}\vec c{{/formula}}
28 -1. {{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-2\\-2\\20\end{array}\right)=\vec c{{/formula}}
29 -1. {{formula}}\left(\begin{array}{c}1\\2\\3\end{array}\right)-2\left(\begin{array}{c}-2\\2\\0\end{array}\right)+\vec c=\vec o{{/formula}}
28 +1. {{formula}}-2\left(\begin{matrix}1\\0,5\\4\end{matrix}\right)-4\left(\begin{matrix}-1\\0,5\\4\end{matrix}\right)+\frac{1}{2}\left(\begin{matrix}-2\\-2\\20\end{matrix}\right)=\vec c{{/formula}}
29 +1. {{formula}}\left(\begin{matrix}1\\2\\3\end{matrix}\right)-2\left(\begin{matrix}-2\\2\\0\end{matrix}\right)+\vec c=\vec o{{/formula}}
30 30  {{/aufgabe}}
31 31  
32 32  {{aufgabe id="Segelregatta" afb="I" kompetenzen="K1,K3,K6" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
... ... @@ -39,12 +39,12 @@
39 39  
40 40  {{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}{{/formula}}, {{formula}}\overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
41 41  
42 -mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
42 +mit {{formula}}\vec{a}=\left(\begin{matrix} 25 \\ 10 \end{matrix}\right), \quad \vec{b}=\left(\begin{matrix} -10 \\ 10 \end{matrix}\right), \quad \vec{c}=\left(\begin{matrix} 0 \\ 30 \end{matrix}\right), \quad \vec{d}=\left(\begin{matrix} 80 \\ 0 \end{matrix}\right){{/formula}}
43 43  
44 44  Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
45 45  )))
46 46  1. Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.
47 -1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Ist er rechtzeitig vor Ort, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt?
47 +1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position //(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt?
48 48  {{/aufgabe}}
49 49  
50 50  {{aufgabe id="In Summe Null" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
... ... @@ -78,8 +78,8 @@
78 78  {{/aufgabe}}
79 79  
80 80  {{aufgabe id="Vektor" afb="II" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
81 -Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
82 -Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
81 +Der Vektor {{formula}}\vec{a}= \left(\begin{matrix} a_1 \\ a_2 \end{matrix}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
82 +Zusätzlich soll gelten: {{formula}}\left(\begin{matrix}3 \\ 1 \end{matrix}\right) + \vec{a} = \left(\begin{matrix} 0,5 \\ d \end{matrix}\right){{/formula}}.
83 83  Bestimme den Wert von d.
84 84  {{/aufgabe}}
85 85