Zuletzt geändert von akukin am 2024/12/22 18:42

Von Version 79.5
bearbeitet von Torben Würth
am 2024/02/06 16:48
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 33.1
bearbeitet von Frauke Beckstette
am 2024/02/05 13:56
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.torbenwuerth
1 +XWiki.beckstette
Inhalt
... ... @@ -8,70 +8,6 @@
8 8  
9 9  == Vektoren ==
10 10  
11 -{{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
12 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}{{/formula}}
13 -a)
14 -{{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}2\\4 \end{array}\right){{/formula}}
15 -b)
16 -{{formula}}\vec{a}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}}
17 -{{/aufgabe}}
18 -
19 -{{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
20 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}}
21 -a)
22 -{{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}}
23 -b)
24 -{{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}}
25 -{{/aufgabe}}
26 -
27 -{{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
28 -Berechne
29 -a)
30 -{{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}}
31 -b)
32 -{{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)=\hspace{2cm}{{/formula}}c){{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
33 -d)
34 -{{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
35 -e)
36 -{{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
37 -
38 -f)
39 -{{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}}
40 -g)
41 -{{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}}
42 -h)
43 -{{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}}
44 -i)
45 -{{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
46 -{{/aufgabe}}
47 -
48 -{{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
49 -a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
50 -b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
51 -{{/aufgabe}}
52 -
53 -{{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
54 -a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}}
55 -b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}}
56 -c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}}
57 -d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}}
58 -e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
59 -f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
60 -{{/aufgabe}}
61 -
62 -
63 -{{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
64 -[[image:segelregatta teil1.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
65 -{{/aufgabe}}
66 -
67 -{{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
68 -[[image:segelregatta teil2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
69 -{{/aufgabe}}
70 -
71 -{{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
72 -[[image:segelregatta teil3.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
73 -{{/aufgabe}}
74 -
75 75  {{aufgabe id="Vektor" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
76 76  Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
77 77  Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
... ... @@ -81,69 +81,45 @@
81 81  {{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
82 82  Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
83 83  Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
20 +
84 84  {{/aufgabe}}
85 85  
86 -{{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" niveau="e" tags="iqb" zeit="10"}}
23 +{{aufgabe id="3D-Koordinatensystem" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" niveau="e" tags="iqb"}}
87 87  
88 88  In einem Koordinatensystem ist ein gerader Zylinder mit dem Radius 5 und der Höhe 10 gegeben, dessen Grundfläche in der {{formula}}x_1x_2{{/formula}}-Ebene liegt. {{formula}} M(8|5|10){{/formula}} ist der Mittelpunkt der Deckfläche.
89 89  1. Weise nach, dass der Punkt {{formula}}P(5|1|0) {{/formula}} auf dem Rand der Grundfläche des Zylinders liegt.
90 90  1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
28 +
91 91  {{/aufgabe}}
92 92  
93 -{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" niveau="g" tags="iqb" Zeit="10"}}
94 -Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
95 -[[image:Sechseckvektoren.png||width="250" style="float:right"]]
96 -1. Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar. {{formula}}\Vec{x}=\Vec{b}+\Vec{c}+\Vec{d} \qquad \Vec{y}=\Vec{a}+\Vec{c} {{/formula}}
97 -1. Stelle den Vektor {{formula}}\overrightarrow{FB} {{/formula}} mithilfe **drei** der Vektoren {{formula}}\Vec{a}, \Vec{b}, \Vec{c}, \Vec{d}, \Vec{e} {{/formula}} und {{formula}}\Vec{f} {{/formula}} dar.
98 -1. Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
99 -{{/aufgabe}}
100 100  
101 -{{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb" zeit="10"}}
102 -In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
103 -1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
104 -1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
105 -{{/aufgabe}}
32 +{{aufgabe id="Dreieck Koordinaten" afb="II" kompetenzen="K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_3.pdf]]" niveau="g" tags="iqb" zeit="6"}}
33 +Gegeben sind die Punkte {{formula}} A(5|0|a){{/formula}} und {{formula}}B(2|4|5){{/formula}}. Der Koordinatenursprung wird mit {{formula}}O{{/formula}} bezeichnet.
106 106  
107 -{{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb" zeit="10"}}
108 -Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
109 -
110 -1. Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
111 -1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
35 +1. Bestimme denjenigen Wert von {{formula}} a{{/formula}}, für den {{formula}}A{{/formula}} und {{formula}}B{{/formula}} den Abstand 5 haben.
36 +1. Ermittle denjenigen Wert von {{formula}} a{{/formula}}, für den das Dreieck {{formula}}OAB{{/formula}} im Punkt {{formula}}B{{/formula}} rechtwinklig ist.
112 112  {{/aufgabe}}
113 113  
114 -{{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" zeit="10"}}
115 -Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
39 +{{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
40 +Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
41 +Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
116 116  
117 -[[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
118 -1. Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
119 -1. Berechne die Länge des Streckenzugs in der Wirklichkeit.
120 120  {{/aufgabe}}
121 121  
45 +{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" niveau="g" tags="iqb"}}
122 122  
123 -{{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
124 -Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
125 -1. Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
126 -1. Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
127 -{{/aufgabe}}
47 +Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
48 +[[image:Sechseckvektoren.png||width="250" style="display:block;margin-left:auto;margin-right:auto"]]
128 128  
129 -{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb" zeit="10"}}
130 -[[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
131 -Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
132 -
133 -1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
134 -1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
135 -Begründe, dass {{formula}}|\overline{MD_k}|=\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
136 -Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
137 -{{/aufgabe}}
50 +a) Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar.
138 138  
139 -{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10"}}
140 -[[image:Schwerpunkt.png||width="350" style="float: right"]]
141 -Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}.
142 -Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}.
143 -
144 -1. Berechne die Koordinaten des Schwerpunktes {{formula}}S{{/formula}}.
145 -1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
146 -
52 +b) Stelle den Vektor {{formula}}\overrightarrow{FB} {{/formula}} mithilfe der Vektoren {{formula}}\Vec{a}, \Vec{b}, \Vec{c}, \Vec{d}, \Vec{e} {{/formula}} und {{formula}}\Vec{f} {{/formula}} dar.
53 +
54 +c) Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
147 147  {{/aufgabe}}
148 148  
149 -{{seitenreflexion kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}
57 +{{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb"}}
58 +In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
59 +1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
60 +1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
61 +{{/aufgabe}}
Saarpolygon.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.beckstette
Größe
... ... @@ -1,1 +1,0 @@
1 -123.7 KB
Inhalt
Schwerpunkt.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -32.1 KB
Inhalt
gleichschenkligesdreieckabb1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -25.6 KB
Inhalt
segelregatta teil1.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -162.8 KB
Inhalt
segelregatta teil1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -323.8 KB
Inhalt
segelregatta teil2.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -153.8 KB
Inhalt
segelregatta teil2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -296.8 KB
Inhalt
segelregatta teil3.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -129.2 KB
Inhalt
segelregatta teil3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -323.8 KB
Inhalt
XWiki.XWikiComments[0]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.torbenwuerth
Kommentar
... ... @@ -1,5 +1,0 @@
1 -Ich würde vorschlagen:
2 -- mindestens zwei Aufgaben (eine eine zwei-, die andere dreidimensional) zur zeichnerischen und rechnerischen Addition von Vektoren.
3 -- mindestens zwei Aufgaben zur zeichnerischen Multiplikation und rechnerischen Multiplikation
4 -- eine umfangreiche Aufgabe (zwei-, dreidimensionol zur "stumpfen" Addition und Subtraktion von Vektoren
5 -- Eine Aufgabe, bei der die Vektoren zunächst zu bestimmen sind und danach addiert, subtrahiert werden
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-02-06 10:47:43.240
XWiki.XWikiComments[1]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.beckstette
Kommentar
... ... @@ -1,1 +1,0 @@
1 -Die Reihenfolge sollte noch entsprechend des Schwierigkeitsgrades geändert werden.
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-02-06 13:58:17.30