Version 85.1 von akukin am 2024/02/06 18:52

Zeige letzte Bearbeiter
1 {{seiteninhalt/}}
2
3 [[Kompetenzen.K5]] Ich kann elementare Rechenoperationen für Vektoren verwenden
4 [[Kompetenzen.K4]] Ich kann elementare Rechenoperationen für Vektoren geometrisch deuten
5 [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors berechnen
6 [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren
7 [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
8
9 == Vektoren ==
10
11 {{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
12 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}{{/formula}}
13 a)
14 {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}2\\4 \end{array}\right){{/formula}}
15 b)
16 {{formula}}\vec{a}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}}
17 {{/aufgabe}}
18
19 {{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
20 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}}
21 a)
22 {{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}}
23 b)
24 {{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}}
25 {{/aufgabe}}
26
27 {{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
28 Berechne
29 a)
30 {{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}}
31 b)
32 {{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)={{/formula}}
33 c)
34 {{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
35 d)
36 {{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
37 e)
38 {{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
39
40 f)
41 {{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}}
42 g)
43 {{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}}
44 h)
45 {{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}}
46 i)
47 {{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
48 {{/aufgabe}}
49
50 {{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
51 a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
52 b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
53 {{/aufgabe}}
54
55 {{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
56 a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}}
57 b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}}
58 c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}}
59 d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}}
60 e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
61 f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
62 {{/aufgabe}}
63
64
65 {{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
66 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
67
68 Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
69 {{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}
70
71 [[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
72 Drücke die Vektoren {{formula}}\overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{s_3}, \overrightarrow{s_4}{{/formula}} und {{formula}}\overrightarrow{s_5}{{/formula}} durch Linearkombinationen folgender Vektoren aus:
73
74 {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
75 {{/aufgabe}}
76
77 {{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
78 [[image:Segelregatta Teil 2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
79 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
80
81 Das Segelteam steuert den untenstehenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
82
83 {{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}, \qquad \overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}
84
85 {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}, \qquad \overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
86
87 mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
88
89 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
90 {{/aufgabe}}
91
92 {{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
93 [[image:segelregatta teil3.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
94 {{/aufgabe}}
95
96 {{aufgabe id="Vektor" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
97 Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
98 Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
99 Bestimme den Wert von d.
100 {{/aufgabe}}
101
102 {{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
103 Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
104 Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
105 {{/aufgabe}}
106
107 {{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" niveau="e" tags="iqb" zeit="10"}}
108
109 In einem Koordinatensystem ist ein gerader Zylinder mit dem Radius 5 und der Höhe 10 gegeben, dessen Grundfläche in der {{formula}}x_1x_2{{/formula}}-Ebene liegt. {{formula}} M(8|5|10){{/formula}} ist der Mittelpunkt der Deckfläche.
110 1. Weise nach, dass der Punkt {{formula}}P(5|1|0) {{/formula}} auf dem Rand der Grundfläche des Zylinders liegt.
111 1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
112 {{/aufgabe}}
113
114 {{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" niveau="g" tags="iqb" Zeit="10"}}
115 Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
116 [[image:Sechseckvektoren.png||width="250" style="float:right"]]
117 1. Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar. {{formula}}\Vec{x}=\Vec{b}+\Vec{c}+\Vec{d} \qquad \Vec{y}=\Vec{a}+\Vec{c} {{/formula}}
118 1. Stelle den Vektor {{formula}}\overrightarrow{FB} {{/formula}} mithilfe **drei** der Vektoren {{formula}}\Vec{a}, \Vec{b}, \Vec{c}, \Vec{d}, \Vec{e} {{/formula}} und {{formula}}\Vec{f} {{/formula}} dar.
119 1. Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
120 {{/aufgabe}}
121
122 {{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb" zeit="10"}}
123 In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
124 1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
125 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
126 {{/aufgabe}}
127
128 {{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb" zeit="10"}}
129 Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
130
131 1. Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
132 1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
133 {{/aufgabe}}
134
135 {{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" zeit="10"}}
136 Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
137
138 [[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
139 1. Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
140 1. Berechne die Länge des Streckenzugs in der Wirklichkeit.
141 {{/aufgabe}}
142
143
144 {{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
145 Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
146 1. Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
147 1. Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
148 {{/aufgabe}}
149
150 {{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb" zeit="10"}}
151 [[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
152 Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
153
154 1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
155 1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
156 Begründe, dass {{formula}}|\overline{MD_k}|=\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
157 Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
158 {{/aufgabe}}
159
160 {{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10"}}
161 [[image:Schwerpunkt.png||width="350" style="float: right"]]
162 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}.
163 Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}.
164
165 1. Berechne die Koordinaten des Schwerpunktes {{formula}}S{{/formula}}.
166 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
167
168 {{/aufgabe}}
169
170 {{seitenreflexion kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}