Zuletzt geändert von Holger Engels am 2024/11/10 11:29

Von Version 39.1
bearbeitet von Daniel Stocker
am 2024/02/05 17:32
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 32.2
bearbeitet von Daniel Stocker
am 2024/02/05 14:07
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -5,7 +5,7 @@
5 5  [[Kompetenzen.K5]] Ich kann Winkel zwischen zwei Vektoren bestimmen
6 6  [[Kompetenzen.K5]] [[Kompetenzen.K6]] Ich kann geometrische Objekte in Ebene und Raum untersuchen
7 7  
8 -{{aufgabe id="Winkel berechnen" afb="I" kompetenzen="K5" quelle="Kim Fujan, Daniel Stocker" cc="BY-SA" zeit="3"}}
8 +{{aufgabe id="Ortogonalität prüfen" afb="I" kompetenzen="K5" quelle="Kim Fujan, Daniel Stocker" cc="BY-SA" zeit="3"}}
9 9  Berechne jeweils den Winkel zwischen den beiden Vektoren:
10 10  
11 11  a) {{formula}}\vec a = \left(\begin{array}{c} 7 \\ 5 \\ -3\end{array}\right), \vec b = \left(\begin{array}{c} -1 \\ 2 \\ -2\end{array}\right){{/formula}}
... ... @@ -14,11 +14,6 @@
14 14  
15 15  {{/aufgabe}}
16 16  
17 -{{aufgabe id="Orthogonalen Vektor finden" afb="I" kompetenzen="K5" quelle="Kim Fujan, Daniel Stocker" cc="BY-SA" zeit="3"}}
18 -Bestimme a, sodass der Vektor {{formula}}\vec u = \left(\begin{array}{c} 4 \\ 5 \\ 2\end{array}\right){{/formula}} zu dem Vektor {{formula}}\vec v = \left(\begin{array}{c} \frac{2}{3} \\ a \\ 1\end{array}\right){{/formula}} orthogonal ist.
19 -{{/aufgabe}}
20 -
21 -
22 22  {{aufgabe id="Flächenberechnung Dreieck" afb="I" kompetenzen="K6" quelle="Kim Fujan, Daniel Stocker" cc="BY-SA" zeit="5"}}
23 23  Berechne den Flächeninhalt des Dreiecks, das durch die Punkte A(2|-1|4), B(0|9|-3), C(-2|5|1) festgelegt wird.
24 24  {{/aufgabe}}
... ... @@ -45,12 +45,8 @@
45 45  Begründe, dass es sich bei dem gegebenen Viereck um einen Drachen handelt: A(8,5|5|-3,5), B(4|5|-2), C(-3,5|8|2,5), D(5|7|-1).
46 46  {{/aufgabe}}
47 47  
48 -{{aufgabe id="Quadrat begründen" afb="II" kompetenzen="K1, K4, K5, K6" quelle="Kim Fujan, Daniel Stocker" cc="BY-SA" zeit="4"}}
49 -Begründe, dass es sich bei dem gegebenen Viereck um ein Quadrat handelt: A(5|-1|3), B(1|1|-1), C(-1|5|3), D(3|3|7).
50 -{{/aufgabe}}
51 51  
52 -
53 -{{aufgabe id="Punktbestimmung durch Skalarprodukt" afb="II" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_A_6.pdf]]" niveau="e" tags="iqb" zeit="6"}}
44 +{{aufgabe id="Punktbestimmung durch Skalarprodukt" afb="II" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_A_6.pdf]]" niveau="e" tags="iqb"}}
54 54  Gegeben sind die Punkte {{formula}}A(2|-3|1){{/formula}} und {{formula}}B(2|3|1){{/formula}}.
55 55  
56 56  1. Begründe, dass die Gerade durch {{formula}}A {{/formula}} und {{formula}}B{{/formula}} parallel zur y-Achse verläuft.