Änderungen von Dokument BPE 12.3 Ableitungsregeln für Verknüpfungen und Verkettungen
Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47
Von Version 54.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:32
am 2025/01/05 15:32
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 56.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:42
am 2025/01/05 15:42
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -21,7 +21,8 @@ 21 21 ))) 22 22 1. Recherchiere die Ableitungsregeln (vgl. Merkhilfe, S. 5). 23 23 1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a), (b) und (c) die Ableitungsregeln für differenzierbare Funktionen im Wesentlichen gezeigt sind. 24 -//Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}} gilt. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche die Ableitungsregeln erfüllen. 24 + 25 +//Anmerkung//, insbesondere zu Teilaufgabe e). Jede differenzierbare Funktion ist //lokal// "linear", genauer: "linear approximierbar" (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// gilt die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}}. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche erwiesenermaßen die Ableitungsregeln erfüllen. 25 25 {{/aufgabe}} 26 26 27 27 {{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} ... ... @@ -59,7 +59,7 @@ 59 59 //Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=x^n\cdot f(x)=1{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}0=h'(x)=(x^n)'\cdot f(x)+x^n\cdot f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf. 60 60 1. Zeige die Ableitungsregel für Potenzfunktionen auf S. 5 der Merkhilfe, d.h., die Instanz der Potenzregel für {{formula}}k\in \mathbb{R}_+^*{{/formula}}. 61 61 //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel. 62 -//Anmerkung//. Die Fortsetzung {{formula}}e^{k\cdot \ln(x)}{{/formula}} der Funktionsgleichung //f// klärt nebenbei,wasunter Potenzen mit positiv reellen Exponentenzu verstehen ist.63 +//Anmerkung//. Die Fortsetzung {{formula}}e^{k\cdot \ln(x)}{{/formula}} der Funktionsgleichung von //f// leistet (geradezu nebenbei) die (längst überfällige) Definition von Potenzen mit positiv reellen Exponenten. 63 63 {{/aufgabe}} 64 64 65 65 {{aufgabe id="Winkelfunktionen" afb="III" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}}