Änderungen von Dokument BPE 12.3 Ableitungsregeln für Verknüpfungen und Verkettungen
Zuletzt geändert von Holger Engels am 2025/10/23 09:42
Von Version 88.1
bearbeitet von Martina Wagner
am 2025/10/14 12:39
am 2025/10/14 12:39
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 90.1
bearbeitet von Martina Wagner
am 2025/10/14 13:01
am 2025/10/14 13:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -37,6 +37,18 @@ 37 37 38 38 {{/aufgabe}} 39 39 40 +{{aufgabe id="Korrekturen" afb="II" kompetenzen="K1, K6" quelle="Martina Wagner" cc="BY-SA" zeit="8"}} 41 + 42 +Tim hat zu einem gegebenen Funktionstermen eine Ableitung erstellt. 43 +Begründe, warum die Ableitung nicht korrekt ist. 44 + 45 +{{formula}}f(x)=\frac{1}{(6x+9)^{4}} {{/formula}}~ und~ {{formula}}f´(x)=\frac{1}{4(6x+9)^{3}} {{/formula}} 46 + 47 + 48 +{{/aufgabe}} 49 + 50 + 51 + 40 40 {{aufgabe id="Funktion und Ableitung" afb="III" kompetenzen="K2, K5, K6" quelle="Martina Wagner" cc="BY-SA" zeit="8"}} 41 41 42 42 Ein Funktionsterm und deren Ableitung wurde nur unvollständig gegeben. Ermittle mögliche Eintragungen für die Kästchen. ... ... @@ -73,7 +73,7 @@ 73 73 //Anmerkung//, insbesondere zu Teilaufgabe e). Jede differenzierbare Funktion ist //lokal// "linear", genauer: "linear approximierbar" (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// gilt die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}}. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche erwiesenermaßen die Ableitungsregeln erfüllen. 74 74 {{/aufgabe}} 75 75 76 -{{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} 88 +{{aufgabe id="Exponentialfunktion ableiten" afb="III" kompetenzen="K1,K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} 77 77 Gegeben ist eine Exponentialfunktion {{formula}}f_q{{/formula}} mit {{formula}}f_q(x)=q^x{{/formula}} für //q>0//. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}f_q'{{/formula}} untersuchen und gehen dabei folgendermaßen vor. 78 78 (% class="abc" %) 79 79 1. Zeige, dass gilt: {{formula}}f_q'(x)=f_q(x)\cdot f_q'(0){{/formula}}. ... ... @@ -89,12 +89,12 @@ 89 89 1. Es gelten allgemein folgende Gleichungen für die erste Ableitung: {{formula}}f_q'(x)=\ln(q)\cdot f_q(x){{/formula}} bzw. kurz {{formula}}f_q'=\ln(q)\cdot f_q{{/formula}}. 90 90 {{/aufgabe}} 91 91 92 -{{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}} 104 +{{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}} 93 93 Gegeben ist die natürliche Logarithmusfunktion {{formula}}\ln{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}_+^*{{/formula}} und zugehörigem Wertebereich {{formula}}\mathbb{R}{{/formula}}. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}\ln'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. 94 94 //Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=e^{\ln(x)}=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=e^{\ln(x)}\cdot \ln'(x){{/formula}} nach {{formula}}\ln'{{/formula}} auf. 95 95 {{/aufgabe}} 96 96 97 -{{aufgabe id="Potenzregel und Produktregel" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 109 +{{aufgabe id="Potenzregel und Produktregel" afb="III" kompetenzen="K1,K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 98 98 Gegeben ist eine Funktion //f// mit {{formula}}f(x)=x^k{{/formula}}. 99 99 (% class="abc" %) 100 100 1. Zeige die Instanz der Potenzregel für {{formula}}k=0,1,2{{/formula}} mittels Definition des Differenzialquotienten.