Zuletzt geändert von Holger Engels am 2025/10/15 06:54

Von Version 46.1
bearbeitet von Holger Engels
am 2025/10/13 12:13
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 48.1
bearbeitet von Holger Engels
am 2025/10/14 09:18
Änderungskommentar: Neues Bild Weiterzeichnen e.svg hochladen

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -23,7 +23,7 @@
23 23  1. Der Graph einer Stammfunktion von {{formula}}f{{/formula}} verläuft durch {{formula}}P{{/formula}}. Skizziere diesen Graphen in der Abbildung.
24 24  {{/aufgabe}}
25 25  
26 -{{aufgabe id="Funktionen aus Ableitungsfunktionen skizzieren" afb="II" kompetenzen="K5" tags="problemlösen" quelle="S.Kanzler; K.Fujan" cc="BY-SA" zeit="21" niveau="g"}}
26 +{{aufgabe id="Funktionen aus Ableitungsfunktionen skizzieren" afb="II" kompetenzen="K5" quelle="S.Kanzler; K.Fujan" cc="BY-SA" zeit="21" niveau="g"}}
27 27  
28 28   Skizziere zu den abgebildeten {{formula}}f'(x)-{{/formula}}Graphen jeweils die Orginalfunktion.
29 29   [[image:Grafen_aufl.png||width="600" style="float: middle"]]
... ... @@ -30,14 +30,14 @@
30 30  
31 31  {{/aufgabe}}
32 32  
33 -{{aufgabe id="Funktionsgraph aus Eigenschaften" afb="II" kompetenzen=" " quelle="S.Kanzler, K.Fujan" cc="BY-SA" zeit="5"}}
34 -Über die Ableitungsfunktion {{formula}}f'(x){{/formula}} einer Funktion {{formula}}f(x){{/formula}} ist folgendes bekannt:
33 +{{aufgabe id="Funktionsgraph aus Eigenschaften" afb="II" kompetenzen=" " quelle="S.Kanzler, K.Fujan" cc="BY-SA" zeit="10"}}
34 +Über die Ableitungsfunktion {{formula}}f'(x){{/formula}} einer Polynomfunktion {{formula}}f(x){{/formula}} ist folgendes bekannt:
35 35  * {{formula}}f'(x){{/formula}} hat eine Extremstelle bei {{formula}}x=1{{/formula}}
36 36  * {{formula}}f'(-3)=f(3)=0{{/formula}}
37 37  * {{formula}}f'(x){{/formula}} ist an der Stelle {{formula}}x=-3{{/formula}} linksgekrümmt
38 38  
39 39  (% class="abc" %)
40 -1. Bestimme den Grad der Ableitungsfunktion {{formula}}f'(x){{/formula}}.
40 +1. Bestimme den minimalen Grad der Ableitungsfunktion {{formula}}f'(x){{/formula}}.
41 41  1. Skizziere ein passendes Schaubild der Ableitungsfunktion {{formula}}f'(x){{/formula}}.
42 42  1. Ermittle dazu den Graph einer möglichen Funktion {{formula}}f(x){{/formula}}.
43 43  {{/aufgabe}}
Weiterzeichnen e.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.holgerengels
Größe
... ... @@ -1,0 +1,1 @@
1 +14.8 KB
Inhalt
... ... @@ -1,0 +1,1 @@
1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="592" height="332"><defs><clipPath id="NJwHfpTPdrdZ"><path fill="none" stroke="none" d=" M 0 0 L 592 0 L 592 332 L 0 332 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#NJwHfpTPdrdZ)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="593" height="333" fill-opacity="1"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 2.5 0.5 L 2.5 332.5 M 2.5 0.5 L 2.5 332.5 M 55.5 0.5 L 55.5 332.5 M 107.5 0.5 L 107.5 332.5 M 212.5 0.5 L 212.5 332.5 M 265.5 0.5 L 265.5 332.5 M 317.5 0.5 L 317.5 332.5 M 370.5 0.5 L 370.5 332.5 M 422.5 0.5 L 422.5 332.5 M 475.5 0.5 L 475.5 332.5 M 527.5 0.5 L 527.5 332.5 M 580.5 0.5 L 580.5 332.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 13.5 0.5 L 13.5 332.5 M 23.5 0.5 L 23.5 332.5 M 34.5 0.5 L 34.5 332.5 M 44.5 0.5 L 44.5 332.5 M 65.5 0.5 L 65.5 332.5 M 76.5 0.5 L 76.5 332.5 M 86.5 0.5 L 86.5 332.5 M 97.5 0.5 L 97.5 332.5 M 118.5 0.5 L 118.5 332.5 M 128.5 0.5 L 128.5 332.5 M 139.5 0.5 L 139.5 332.5 M 149.5 0.5 L 149.5 332.5 M 170.5 0.5 L 170.5 332.5 M 181.5 0.5 L 181.5 332.5 M 191.5 0.5 L 191.5 332.5 M 202.5 0.5 L 202.5 332.5 M 223.5 0.5 L 223.5 332.5 M 233.5 0.5 L 233.5 332.5 M 244.5 0.5 L 244.5 332.5 M 254.5 0.5 L 254.5 332.5 M 275.5 0.5 L 275.5 332.5 M 286.5 0.5 L 286.5 332.5 M 296.5 0.5 L 296.5 332.5 M 307.5 0.5 L 307.5 332.5 M 328.5 0.5 L 328.5 332.5 M 338.5 0.5 L 338.5 332.5 M 349.5 0.5 L 349.5 332.5 M 359.5 0.5 L 359.5 332.5 M 380.5 0.5 L 380.5 332.5 M 391.5 0.5 L 391.5 332.5 M 401.5 0.5 L 401.5 332.5 M 412.5 0.5 L 412.5 332.5 M 433.5 0.5 L 433.5 332.5 M 443.5 0.5 L 443.5 332.5 M 454.5 0.5 L 454.5 332.5 M 464.5 0.5 L 464.5 332.5 M 485.5 0.5 L 485.5 332.5 M 496.5 0.5 L 496.5 332.5 M 506.5 0.5 L 506.5 332.5 M 517.5 0.5 L 517.5 332.5 M 538.5 0.5 L 538.5 332.5 M 548.5 0.5 L 548.5 332.5 M 559.5 0.5 L 559.5 332.5 M 569.5 0.5 L 569.5 332.5 M 590.5 0.5 L 590.5 332.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 0.5 31.5 L 592.5 31.5 M 0.5 31.5 L 592.5 31.5 M 0.5 83.5 L 592.5 83.5 M 0.5 136.5 L 592.5 136.5 M 0.5 188.5 L 592.5 188.5 M 0.5 293.5 L 592.5 293.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 0.5 10.5 L 592.5 10.5 M 0.5 10.5 L 592.5 10.5 M 0.5 20.5 L 592.5 20.5 M 0.5 41.5 L 592.5 41.5 M 0.5 52.5 L 592.5 52.5 M 0.5 62.5 L 592.5 62.5 M 0.5 73.5 L 592.5 73.5 M 0.5 94.5 L 592.5 94.5 M 0.5 104.5 L 592.5 104.5 M 0.5 115.5 L 592.5 115.5 M 0.5 125.5 L 592.5 125.5 M 0.5 146.5 L 592.5 146.5 M 0.5 157.5 L 592.5 157.5 M 0.5 167.5 L 592.5 167.5 M 0.5 178.5 L 592.5 178.5 M 0.5 199.5 L 592.5 199.5 M 0.5 209.5 L 592.5 209.5 M 0.5 220.5 L 592.5 220.5 M 0.5 230.5 L 592.5 230.5 M 0.5 251.5 L 592.5 251.5 M 0.5 262.5 L 592.5 262.5 M 0.5 272.5 L 592.5 272.5 M 0.5 283.5 L 592.5 283.5 M 0.5 304.5 L 592.5 304.5 M 0.5 314.5 L 592.5 314.5 M 0.5 325.5 L 592.5 325.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 160.5 2.5 L 160.5 332.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 160.5 1.5 L 156.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 160.5 1.5 L 164.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 0.5 241.5 L 590.5 241.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 591.5 241.5 L 587.5 237.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 591.5 241.5 L 587.5 245.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="50" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="102" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="210" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="263" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="315" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="368" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="420" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">5</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="473" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="525" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">7</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="578" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="140" y="298" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="146" y="193" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="146" y="141" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="146" y="88" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="146" y="36" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="146" y="257" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(21,101,192)" paint-order="fill stroke markers" d=" M 23.9921875 -8.95379742073851 L 24.28125000000003 -3.008660764709532 L 24.5703125 2.836511001367569 L 24.85937500000003 8.58286820330855 L 25.1484375 14.231550275607532 L 25.43750000000003 19.783685853352495 L 25.72656250000003 25.24039286341383 L 26.015625 30.60277861492517 L 26.30468750000003 35.87193988905199 L 26.59375 41.048963028055965 L 26.88281250000003 46.13492402366572 L 27.171875 51.13088860474832 L 27.75000000000003 60.857040645743865 L 28.32812500000003 70.23574301325863 L 28.90625 79.27516086034544 L 29.48437500000003 87.98330331752845 L 30.0625 96.36802613733491 L 30.640625 104.43703429736439 L 31.21875 112.19788456249302 L 31.79687500000003 119.65798800683515 L 32.375000000000014 126.8246124960524 L 32.953125 133.70488513060252 L 33.53125000000003 140.30579465051179 L 34.109375 146.6341938022366 L 34.687500000000014 152.69680166819217 L 35.265625000000014 158.5002059594906 L 35.843750000000014 164.0508652724485 L 36.421875000000014 169.3551113093997 L 37 174.41915106434777 L 38.156250000000014 183.8508290345933 L 39.312500000000014 192.39314185847604 L 40.46875000000003 200.0914710397189 L 41.625 206.9894009671905 L 42.781250000000014 213.12878094664904 L 43.937500000000014 218.54978526789552 L 46.250000000000014 227.38933613355158 L 48.56250000000003 233.7981119072418 L 50.875000000000014 238.04290550986775 L 51.453125000000014 238.79516258567804 L 52.031250000000014 239.43121835286635 L 53.1875 240.3688539679553 L 53.765625000000014 240.6773095778663 L 54.343750000000014 240.88331811441694 L 54.921875000000014 240.9901352789763 L 55.500000000000014 241.0009462644162 L 56.078125000000014 240.91886703477257 L 56.656250000000014 240.7469455839576 L 57.234375000000014 240.4881631738427 L 57.812500000000014 240.14543555202835 L 58.968750000000014 239.21948725925776 L 60.125000000000014 237.99116142622546 L 62.437500000000014 234.71078762947323 L 64.75000000000001 230.4619602530369 L 67.06250000000001 225.3883912123626 L 69.37500000000001 219.62087149869626 L 71.68750000000001 213.27821845108662 L 74.00000000000001 206.4681610487562 M 74.00000000000001 206.4681610487562 L 76.31250000000001 199.28816699319958 L 78.62500000000001 191.826215131555 L 80.93750000000001 184.16151656710286 L 83.25000000000001 176.36518760851416 L 85.56250000000001 168.50087752608698 L 87.875 160.62535391008038 L 90.1875 152.7890482628248 L 92.5 145.03656430203353 M 92.5 145.03656430203353 L 94.81250000000001 137.40715130715535 L 97.12500000000001 129.9351447032283 L 99.4375 122.65037594706664 L 101.75 115.57855365831547 M 101.75 115.57855365831547 L 104.0625 108.74161782253955 L 106.375 102.15806878469306 M 106.375 102.15806878469306 L 107.776450525 98.29815257880244 M 317.77644947499994 175.66242237510556 L 319.125 176.6634994158112 M 319.125 176.6634994158112 L 323.75 180.0057625510463 M 323.75 180.0057625510463 L 328.375 183.2087389659373 L 333 186.27494889566955 M 333 186.27494889566955 L 337.625 189.2072422330982 L 342.25 192.0087448903368 L 346.875 194.68281018598856 L 351.5 197.23297493322028 L 356.125 199.6629199109979 L 360.75 201.9764344100386 L 365.375 204.17738455588986 L 370 206.26968512360864 M 370 206.26968512360864 L 374.625 208.25727457142736 L 379.25 210.14409303427055 L 383.875 211.9340630317699 L 388.5 213.6310726593267 L 393.125 215.23896104460778 L 397.75 216.76150586551336 L 402.375 218.20241273900274 L 407 219.56530630312977 L 411.625 220.85372282715525 L 416.25 222.07110419662052 L 420.875 223.22079313175087 L 425.5 224.30602950848674 L 430.125 225.32994766180204 L 434.75 226.29557456075764 L 439.375 227.20582875395644 L 444 228.06351999272204 M 444 228.06351999272204 L 448.625 228.8713494474288 L 453.25 229.6319104399799 L 457.875 230.34768962248268 L 462.5 231.02106853872687 L 467.125 231.65432551114978 L 471.75 232.24963780159996 L 476.375 232.8090839994068 L 481 233.33464659505282 L 485.625 233.82821470215075 L 490.25 234.29158689447164 L 494.875 234.7264741284757 L 499.5 235.13450272518628 L 504.125 235.5172173883394 L 508.75 235.87608423855963 L 513.375 236.2124938458726 L 518 236.52776424518845 L 522.625 236.82314392149394 L 527.25 237.09981475339032 L 531.875 237.3588949053276 L 536.5 237.60144166042403 L 541.1249999999999 237.82845418714268 L 545.75 238.04087623433094 L 550.375 238.2395987502313 L 555 238.42546242205287 L 559.625 238.59926013356034 L 564.25 238.76173933890558 L 568.875 238.91360435160223 L 573.5 239.05551854813442 L 578.125 239.18810648620632 L 582.7499999999999 239.3119559380869 L 587.3749999999999 239.42761983988763 L 592 239.5356181579409" stroke-opacity="0.8" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><path fill="none" stroke="rgb(199,80,0)" paint-order="fill stroke markers" d=" M 107.77644947500002 98.29815257880244 L 111 107.30306564887431 M 111 107.30306564887431 L 113.3125 114.00847986515984 L 115.625 120.86114834011128 L 117.9375 127.81537977966663 L 120.25 134.8300327785267 L 122.5625 141.86817038201443 L 124.875 148.89673761455012 L 127.1875 155.8862605659925 L 129.5 162.81056570891002 L 131.8125 169.64651819709957 L 134.125 176.37377796859928 L 136.4375 182.97457254528894 L 138.75 189.43348548615242 L 141.0625 195.73725951260613 L 143.375 201.87461338217125 L 145.6875 207.83607164137547 L 148 213.61380644029086 M 148 213.61380644029086 L 150.3125 219.2014906397155 L 152.625 224.5941614878494 L 154.9375 229.78809418655004 L 157.25 234.7806847080239 L 161.875 244.1563838436825 L 166.5 252.71891572522466 L 171.125 260.4777188636054 L 175.75 267.45156912039585 L 180.375 273.6665038109095 L 185 279.1540661141953 L 189.625 283.94982744462476 L 194.25 288.0921505640134 L 198.875 291.6211607523876 L 203.5 294.5778963737131 L 208.125 297.0036137274275 L 212.75 298.93922421863743 L 217.375 300.42484465507476 L 222 301.49944392816474 L 226.625 302.2005714952835 L 231.25 302.56415498297224 L 235.875 302.6243559055234 L 240.5 302.4134739658071 L 245.125 301.9618916984881 L 249.75 301.298052350416 L 254.375 300.4484648872103 L 259 299.4377308851641 L 263.625 298.2885888280082 L 268.25 297.02197199166113 L 272.875 295.6570766782619 L 277.5 294.21143806367235 L 282.125 292.70101135925165 L 286.75 291.1402563670215 L 291.375 289.54222383443374 L 296 287.9186422970886 M 296 287.9186422970886 L 300.625 286.28000434047993 L 305.25 284.6356514200667 L 309.875 282.9938565570303 L 314.5 281.3619043787982 M 314.5 281.3619043787982 L 317.77645052499986 280.21526615672536" stroke-opacity="0.8" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>