Änderungen von Dokument BPE 12.6 Extrempunkte, Wendepunkte
Zuletzt geändert von Martina Wagner am 2026/02/03 11:22
Von Version 63.3
bearbeitet von Holger Engels
am 2026/01/07 07:29
am 2026/01/07 07:29
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 64.1
bearbeitet von Holger Engels
am 2026/01/08 13:52
am 2026/01/08 13:52
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -95,6 +95,11 @@ 95 95 Begründe, dass der Graph von f keine Extremstelle im Intervall [0;4] besitzt. 96 96 {{/aufgabe}} 97 97 98 +{{aufgabe id="Ableitungsfunktion gegeben" afb="II" kompetenzen="K1, K2, K5" quelle="Martina Wagner, Holger Engels" niveau= "e" zeit="7"}} 99 +Von einer Funktion {{formula}}g{{/formula}} ist die erste Ableitung gegeben mit {{formula}}g´(x)=e^{-x^2+2x}(-2x+2){{/formula}}. 100 +Bestimme die Koordinaten der Wendepunkte. 101 +{{/aufgabe}} 102 + 98 98 {{aufgabe id="Nullstellen der Ableitungsfunktionen" afb="II" kompetenzen="K4,K6" quelle="Holger Engels" zeit="5"}} 99 99 Gegenstand der Betrachtung sei eine Polynomfunktion //f//, ihre ersten beiden Ableitungen und ihr Graph //K,,f,,// an der Stelle //x,,0,,//. Gib für jedes Kästchen an, ob es sich um eine Extremstelle (ES), Wendestelle (WS), Sattelstelle (SS), einen normalen Kurvenpunkt (╱) handelt, oder ob die Kombination evtl. widersprüchlich ist (↯). 100 100 (%class="border" style="text-align:center"%)