Änderungen von Dokument BPE 16 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/18 20:31
Von Version 20.1
bearbeitet von Martina Wagner
am 2024/02/05 07:26
am 2024/02/05 07:26
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 3 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinawagner1 +XWiki.akukin - Inhalt
-
... ... @@ -1,4 +1,4 @@ 1 -{{aufgabe id="LGS graphisch" afb=" II" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_2.pdf]]" niveau="g" tags="iqb"}}1 +{{aufgabe id="LGS graphisch" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_2.pdf]]" niveau="g" tags="iqb"}} 2 2 Das Gleichungssystem 3 3 4 4 {{formula}} ... ... @@ -21,7 +21,7 @@ 21 21 2. Gib einen Wert von {{formula}}a{{/formula}} und einen Wert von {{formula}}b{{/formula}} an, für die das aus {{formula}}\text{I}{{/formula}} und {{formula}}\text{II}^*{{/formula}} bestehende Gleichungssystem keine Lösung hat. Begründe deine Angabe. 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="Doppelpyramide" afb=" III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb"}}24 +{{aufgabe id="Doppelpyramide" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb"}} 25 25 Gegeben sind die Punkte {{formula}}A(5|-5|12), B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}. 26 26 27 27 ... ... @@ -46,3 +46,18 @@ 46 46 8. Die Doppelpyramide wird so um die {{formula}}x{{/formula}}-Achse gedreht, dass die bisher mit {{formula}}BCT{{/formula}} bezeichnete Seitenfläche in der {{formula}}xy{{/formula}}-Ebene liegt und der bisher mit {{formula}}S{{/formula}} bezeichnete Punkt eine positive {{formula}}y{{/formula}}-Koordinate hat. Bestimme diese {{formula}}y{{/formula}}-Koordinate und veranschauliche dein Vorgehen durch eine Skizze. 47 47 {{/aufgabe}} 48 48 49 +{{aufgabe id="Gleichschenkliges Dreieck" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 50 +[[image:Abb.1.PNG||width="150" style="float: right"]]Für {{formula}}k \in \mathbb{R}{{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k{{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}}D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung 1). 51 +1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist. 52 +1. (((Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. Begründe, dass 53 + 54 +{{formula}}|\overline{MD_k}|= \Bigg|\left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right) \Bigg|{{/formula}} 55 + 56 +die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 57 +))) 58 + 59 +Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}. 60 + 61 +(% start="3" %) 62 +1. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 63 +{{/aufgabe}}
- Abb.1.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +74.3 KB - Inhalt
- Abb.2.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +78.0 KB - Inhalt
- Abb.3.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +78.0 KB - Inhalt