Änderungen von Dokument BPE 16 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/18 20:31
Von Version 26.1
bearbeitet von akukin
am 2024/03/05 17:45
am 2024/03/05 17:45
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 14.1
bearbeitet von Holger Engels
am 2024/01/06 15:39
am 2024/01/06 15:39
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 3 hinzugefügt, 3 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. akukin1 +XWiki.holgerengels - Inhalt
-
... ... @@ -1,30 +1,30 @@ 1 -{{aufgabe id="LGS graphisch" afb=" II" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_2.pdf]]" niveau="g" tags="iqb"}}1 +{{aufgabe id="LGS graphisch" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_2.pdf]]" niveau="g" tags="iqb"}} 2 2 Das Gleichungssystem 3 3 4 4 {{formula}} 5 5 \begin{align*} 6 - \text{I}&\quad -x + y =&-3 \\7 - \text{II}&\quad 2x - 2y =&66 +I &\quad -x + y =&-3 \\ 7 +II &\quad 2x - 2y =&6 8 8 \end{align*} 9 9 {{/formula}} 10 10 11 11 mit {{formula}} x,y \in \mathbb{R} {{/formula}} hat unendlich viele Lösungen. 12 12 13 - 13 +(% style="list-style: alphastyle" %) 14 14 1. Stelle diese Lösungen in einem Koordinatensystem grafisch dar. Gib die Lösung mit {{formula}}y=1{{/formula}} an. 15 15 16 16 Im gegebenen Gleichungssystem wird die Gleichung II durch die folgende Gleichung mit {{formula}}a,b \in \mathbb{R} {{/formula}} ersetzt: 17 +(% style="list-style: alphastyle" %) 18 +{{formula}}II^* \quad a \cdot x - 3y = b{{/formula}} 17 17 18 -{{formula}}\text{II}^* \quad a \cdot x - 3y = b{{/formula}} 19 - 20 - 21 -2. Gib einen Wert von {{formula}}a{{/formula}} und einen Wert von {{formula}}b{{/formula}} an, für die das aus {{formula}}\text{I}{{/formula}} und {{formula}}\text{II}^*{{/formula}} bestehende Gleichungssystem keine Lösung hat. Begründe deine Angabe. 20 +(% style="list-style: alphastyle" start="2" %) 21 +1. Gib einen Wert von {{formula}}a{{/formula}} und einen Wert von {{formula}}b{{/formula}} an, für die das aus {{formula}}I{{/formula}} und {{formula}}II^*{{/formula}} bestehende Gleichungssystem keine Lösung hat. Begründe deine Angabe. 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="Doppelpyramide" afb=" III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb"}}24 +{{aufgabe id="Doppelpyramide" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb"}} 25 25 Gegeben sind die Punkte {{formula}}A(5|-5|12), B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}. 26 26 27 - 27 +(% style="list-style: alphastyle" %) 28 28 1. Zeige, dass das Dreieck {{formula}}ABC{{/formula}} gleichschenklig ist. 29 29 1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunkts {{formula}}D{{/formula}} dieses Quadrates an. 30 30 ... ... @@ -33,60 +33,26 @@ 33 33 34 34 Die Seitenfläche {{formula}}BCT{{/formula}} liegt in einer Ebene {{formula}}E{{/formula}}. 35 35 36 +(% style="list-style: alphastyle" start="3" %) 37 +1. Bestimme eine Gleichung von {{formula}}E{{/formula}}in Koordinatenform. //(zur Kontrolle: {{formula}}12y-5z = 0{{/formula}})// 38 +1. Bestimme die Größe des Winkels, den die Seitenfläche {{formula}}BCT{{/formula}} mit der Fläche {{formula}}ABCD{{/formula}} einschließt. 36 36 37 -3. Bestimme eine Gleichung von {{formula}}E{{/formula}}in Koordinatenform. //(zur Kontrolle: {{formula}}12y-5z = 0{{/formula}})// 38 -4. Bestimme die Größe des Winkels, den die Seitenfläche {{formula}}BCT{{/formula}} mit der Fläche {{formula}}ABCD{{/formula}} einschließt. 39 - 40 40 {{formula}}E{{/formula}} gehört zur Schar der Ebenen {{formula}}E_k: ky-5z = 5k - 60{{/formula}} mit {{formula}}k \in \mathbb{R}{{/formula}}. 41 41 42 - 43 - 5. Alle Ebenen der Schar schneiden sich in einer Gerade. Weise nach, dass die Kante {{formula}}\overline{BC}{{/formula}} auf dieser Gerade liegt.44 - 6. Ermittle diejenigen Werte von {{formula}}k{{/formula}}, für die {{formula}}E_k{{/formula}} mit der Seitenfläche {{formula}}ADS{{/formula}} mindestens einen Punkt gemeinsam hat.45 - 7. Die Seitenfläche {{formula}}ADT{{/formula}} liegt in der Ebene {{formula}}F{{/formula}}. Gib einen Normalenvektor von {{formula}}F{{/formula}} an und begründe deine Angabe, ohne die Koordinaten von {{formula}}A{{/formula}} und {{formula}}D{{/formula}} zu verwenden. Bestimme denjenigen Wert von {{formula}}k{{/formula}}, für den {{formula}}E_k{{/formula}} senkrecht zu {{formula}}F{{/formula}} steht.46 - 8. Die Doppelpyramide wird so um die {{formula}}x{{/formula}}-Achse gedreht, dass die bisher mit {{formula}}BCT{{/formula}} bezeichnete Seitenfläche in der {{formula}}xy{{/formula}}-Ebene liegt und der bisher mit {{formula}}S{{/formula}} bezeichnete Punkt eine positive {{formula}}y{{/formula}}-Koordinate hat. Bestimme diese {{formula}}y{{/formula}}-Koordinate und veranschauliche dein Vorgehen durch eine Skizze.42 +(% style="list-style: alphastyle" start="5" %) 43 +1. Alle Ebenen der Schar schneiden sich in einer Gerade. Weise nach, dass die Kante {{formula}}\overline{BC}{{/formula}} auf dieser Gerade liegt. 44 +1. Ermittle diejenigen Werte von {{formula}}k{{/formula}}, für die {{formula}}E_k{{/formula}} mit der Seitenfläche {{formula}}ADS{{/formula}} mindestens einen Punkt gemeinsam hat. 45 +1. Die Seitenfläche {{formula}}ADT{{/formula}} liegt in der Ebene {{formula}}F{{/formula}}. Gib einen Normalenvektor von {{formula}}F{{/formula}} an und begründe deine Angabe, ohne die Koordinaten von {{formula}}A{{/formula}} und {{formula}}D{{/formula}} zu verwenden. Bestimme denjenigen Wert von {{formula}}k{{/formula}}, für den {{formula}}E_k{{/formula}} senkrecht zu {{formula}}F{{/formula}} steht. 46 +1. Die Doppelpyramide wird so um die {{formula}}x{{/formula}}-Achse gedreht, dass die bisher mit {{formula}}BCT{{/formula}} bezeichnete Seitenfläche in der {{formula}}xy{{/formula}}-Ebene liegt und der bisher mit {{formula}}S{{/formula}} bezeichnete Punkt eine positive {{formula}}y{{/formula}}-Koordinate hat. Bestimme diese {{formula}}y{{/formula}}-Koordinate und veranschauliche dein Vorgehen durch eine Skizze. 47 47 {{/aufgabe}} 48 48 49 -{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 50 -[[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]] 51 -Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung) 52 - 49 +{{aufgabe id="Gleichschenkliges Dreieck" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 50 +[[image:Abb.1.PNG||width="150" style="float: right"]]Für {{formula}}k \in \mathbb{R}{{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k{{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}}D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung 1). 53 53 1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist. 54 -1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. 55 -Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. 56 -Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 52 +1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. Begründe, dass {{formula}}|\overline{MD_k}|= \Bigg|\left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right) \Bigg|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 57 57 58 - 59 59 Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}. 60 60 61 -3. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 62 - 63 -4. Ermittle denjenigen Wert von {{formula}}k{{/formula}}, für den die Größe des Winkels, unter dem die x,,3,,-Achse die Ebene {{formula}}L_k{{/formula}} schneidet, 30° beträgt. 64 - 65 - 66 -[[image:gleichschenkligesdreieckabb2.png||width="220" style="float: right"]] 67 -Zusätzlich zu den Pyramiden wird der in der Abbildung 2 gezeigte Quader betrachtet. Die Punkte {{formula}}A{{/formula}} und {{formula}}Q(1|1|3){{/formula}} sind Eckpunkte des Quaders, die Seitenflächen des Quaders sind parallel zu den Koordinatenebenen. 68 -Für {{formula}}k=6{{/formula}} enthält die Seitenfläche {{formula}}BCD_k{{/formula}} der Pyramide den Eckpunkt {{formula}}Q{{/formula}} des Quaders. Für kleinere Werte von {{formula}}k{{/formula}} schneidet die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader in einem Vieleck. 69 - 70 -5. Für einen Wert von {{formula}}k{{/formula}} verläuft die Seitenfläche {{formula}}BCD_k{{/formula}} durch die Eckpunkte {{formula}}P{{/formula}} und {{formula}}R{{/formula}} des Quaders. Bestimme diesen Wert von {{formula}} k{{/formula}} //(zur Kontrolle: {{formula}}k=4{{/formula}})// 71 - 72 -6.Gib in Abhängigkeit von {{formula}}k{{/formula}} die Anzahl der Eckpunkte des Vielecks an, in dem die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader schneidet. 73 - 74 - 75 - 76 - 77 -7. Nun wird die Pyramide {{formula}}ABCD_6{{/formula}} , d. h. diejenige für {{formula}}k=6{{/formula}}, betrachtet.[[image:gleichschenkligesdreieckabb3.PNG||width="220" style="float: right"]] Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x,,1,,x,,2,,-Ebene, haben den Eckpunkt {{formula}}A{{/formula}} gemeinsam und sind quadratisch. Die Höhe {{formula}}h{{/formula}} der Quader durchläuft alle reellen Werte mit {{formula}}0<h<6{{/formula}}. Für jeden Wert von {{formula}}h{{/formula}}liegt der Eckpunkt {{formula}}Q_h{{/formula}} in der Seitenfläche {{formula}}BCD_6{{/formula}} der Pyramide. Ermittle die Koordinaten des Punkts {{formula}}Q_h{{/formula}}. 56 +(% start="3" %) 57 +1. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 78 78 {{/aufgabe}} 79 - 80 -{{aufgabe id="Raute" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_4.pdf]]" niveau="e" tags="iqb"}} 81 -Gegeben sind die Punkte {{formula}}A\left(3\left|5\right|5\right){{/formula}} und {{formula}}B\left(1\left|1\right|1\right){{/formula}} sowie die Geraden {{formula}}g{{/formula}} und {{formula}}h{{/formula}}, die sich in {{formula}}B{{/formula}} schneiden. 82 -Die Gerade {{formula}}g{{/formula}} hat den Richtungsvektor {{formula}}\left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array}\right){{/formula}}, die Gerade {{formula}}h{{/formula}} den Richtungsvektor {{formula}}\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right){{/formula}}. 83 - 84 -1. Weise nach, dass {{formula}}A{{/formula}} auf {{formula}}g{{/formula}} liegt. 85 -1. Bestimme die Koordinaten zweier Punkte {{formula}}C{{/formula}} und {{formula}}D{{/formula}} so, dass {{formula}}C{{/formula}} auf {{formula}}h{{/formula}} liegt und das Viereck {{formula}}ABCD{{/formula}} eine Raute ist. 86 -{{/aufgabe}} 87 -{{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_5.pdf]]" niveau="e" tags="iqb"}} 88 -Gegeben ist die Gerade {{formula}}g:\vec{x}=\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)+λ\cdot \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right){{/formula}} mit {{formula}}\lambda\in\mathbb{R}{{/formula}} 89 -1. Zeige, dass {{formula}}g{{/formula}} in der Ebene mit der Gleichung {{formula}}x+y+z=2{{/formula}} liegt. 90 -1. Gegeben ist außerdem die Schar der Geraden {{formula}}h_a:\vec{x}=\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)+μ\cdot \left(\begin{array}{c} 1 \\ a \\ 0 \end{array}\right){{/formula}} mit {{formula}}\mu,a\in\mathbb{R}{{/formula}}. Weise nach, dass {{formula}}g{{/formula}} und {{formula}}h_a{{/formula}} für jeden Wert von a windschief sind. 91 -{{/aufgabe}} 92 -{{seitenreflexion/}}
- gleichschenkligesdreieckabb1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -11.2 KB - Inhalt
- gleichschenkligesdreieckabb2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -15.5 KB - Inhalt
- gleichschenkligesdreieckabb3.PNG
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -12.7 KB - Inhalt
- Abb.1.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +74.3 KB - Inhalt
- Abb.2.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +78.0 KB - Inhalt
- Abb.3.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +78.0 KB - Inhalt