Änderungen von Dokument BPE 16 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/18 20:31

Von Version 29.4
bearbeitet von akukin
am 2024/03/27 19:15
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 30.1
bearbeitet von Holger Engels
am 2024/07/23 08:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.akukin
1 +XWiki.holgerengels
Inhalt
... ... @@ -106,4 +106,18 @@
106 106  1. Die Gerade {{formula}}g{{/formula}} soll durch Spiegelung an einer Ebene auf die Gerade {{formula}}h{{/formula}} abgebildet werden. Bestimme eine Gleichung einer geeigneten Ebene und erläutere dein Vorgehen.
107 107  {{/aufgabe}}
108 108  
109 +{{aufgabe id="Rasenfläche" afb="III" kompetenzen="K1, K2, K3, K4, K5, K6" cc="BY-SA" zeit="15" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_16.pdf]]" niveau="g" tags="iqb"}}
110 +[[image:Rasenfläche.JPG||width="300" style="float: right"]]
111 +Die Punkte {{formula}}A(0|0|0), B(18|0|1,5), C(12|10|1), D(12|15|1){{/formula}} und {{formula}}E(0|15|0){{/formula}} stellen modellhaft die Eckpunkte einer ebenen Rasenfläche dar (vgl. Abbildung). Die Strecken {{formula}}\overline{AB}{{/formula}} und {{formula}}\overline{DE}{{/formula}}, sowie {{formula}}\overline{AE}{{/formula}} und {{formula}}\overline{CD}{{/formula}} sind parallel. {{formula}}\overline{CD}{{/formula}} und {{formula}}\overline{DE}{{/formula}} schließen einen rechten Winkel ein.
112 +
113 +Im verwendeten Koordinatensystem entspricht eine Längeneinheit einem Meter in der Wirklichkeit.
114 +
115 +Die Rasenfläche wird von einem Roboter gemäht, der die Form eines flachen Zylinders hat. Zur Beschreibung der Bewegung des Roboters wird der Mittelpunkt seiner kreisförmigen Unterseite betrachtet, die einen Radius von 20 cm hat. Es soll vereinfachend davon ausgegangen werden, dass dieser Mittelpunkt die Rasenfläche berührt. Die Position des Mittelpunkts wird zunächst durch {{formula}}P(3,6|8|0,3){{/formula}} dargestellt (vgl. Abbildung). Die anschließende Bewegung des Mittelpunkts verläuft im Modell entlang der Gerade {{formula}}g{{/formula}}, die durch {{formula}}P{{/formula}} verläuft und den Richtungsvektor {{formula}}\vec{a}= \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right){{/formula}} hat. Dabei bewegt sich der Roboter auf den durch {{formula}}\overline{BC}{{/formula}} dargestellten Rand der Rasenfläche zu.
116 +
117 +(% start="3" %)
118 +1. Berechne die Koordinaten des Punkts {{formula}}Q{{/formula}}, in dem {{formula}}g{{/formula}} die Strecke {{formula}}\overline{BC}{{/formula}} schneidet. //(zur Kontrolle: {{formula}}Q(15,6|4|1,3){{/formula}} )//
119 +1. Weise nach, dass der Winkel, unter dem sich der Roboter dem Rand der Rasenfläche nähert, etwa 41° groß ist.
120 +1. Der Roboter ändert seine Richtung, sobald der Rand seiner Unterseite den Rand der Rasenfläche erreicht. Der Punkt, der die Position des Mittelpunkts im Moment der Richtungsänderung darstellt, wird mit {{formula}}S{{/formula}} bezeichnet. Berechne mithilfe einer geeigneten Skizze die Koordinaten von {{formula}}S{{/formula}}.
121 +{{/aufgabe}}
122 +
109 109  {{seitenreflexion/}}