Wiki-Quellcode von BPE 16 Einheitsübergreifend

Version 13.1 von akukin am 2024/01/05 15:30

Zeige letzte Bearbeiter
1 {{aufgabe id="LGS graphisch" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_2.pdf]]" niveau="g" tags="iqb"}}
2 Das Gleichungssystem
3
4 {{formula}}
5 \begin{align*}
6 I &\quad -x + y =&-3 \\
7 II &\quad 2x - 2y =&6
8 \end{align*}
9 {{/formula}}
10
11 mit {{formula}} x,y \in \mathbb{R} {{/formula}} hat unendlich viele Lösungen.
12
13 (% style="list-style: alphastyle" %)
14 1. Stelle diese Lösungen in einem Koordinatensystem grafisch dar. Gib die Lösung mit {{formula}}y=1{{/formula}} an.
15
16 Im gegebenen Gleichungssystem wird die Gleichung II durch die folgende Gleichung mit {{formula}}a,b \in \mathbb{R} {{/formula}} ersetzt:
17 (% style="list-style: alphastyle" %)
18 {{formula}}II^* \quad a \cdot x - 3y = b{{/formula}}
19
20 (% style="list-style: alphastyle" start="2" %)
21 1. Gib einen Wert von {{formula}}a{{/formula}} und einen Wert von {{formula}}b{{/formula}} an, für die das aus {{formula}}I{{/formula}} und {{formula}}II^*{{/formula}} bestehende Gleichungssystem keine Lösung hat. Begründe deine Angabe.
22 {{/aufgabe}}
23
24 {{aufgabe id="Doppelpyramide" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb"}}
25 Gegeben sind die Punkte {{formula}}A(5|-5|12), B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
26
27 (% style="list-style: alphastyle" %)
28 1. Zeige, dass das Dreieck {{formula}}ABC{{/formula}} gleichschenklig ist.
29 1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunkts {{formula}}D{{/formula}} dieses Quadrates an.
30
31 [[image:Doppelpyramide.png||width="120" style="float: right"]]Im Folgenden wird die rechts abgebildete Doppelpyramide betrachtet. Die beiden Teilpyramiden {{formula}}ABCDS{{/formula}}
32 und {{formula}}ABCDT{{/formula}}sind gleich hoch. Der Punkt {{formula}}T{{/formula}} liegt im Koordinatenursprung, der Punkt {{formula}}S{{/formula}}ebenfalls auf der {{formula}}z{{/formula}}-Achse.
33
34 Die Seitenfläche {{formula}}BCT{{/formula}} liegt in einer Ebene {{formula}}E{{/formula}}.
35
36 (% style="list-style: alphastyle" start="3" %)
37 1. Bestimme eine Gleichung von {{formula}}E{{/formula}}in Koordinatenform. //(zur Kontrolle: {{formula}}12y-5z = 0{{/formula}})//
38 1. Bestimme die Größe des Winkels, den die Seitenfläche {{formula}}BCT{{/formula}} mit der Fläche {{formula}}ABCD{{/formula}} einschließt.
39
40 {{formula}}E{{/formula}} gehört zur Schar der Ebenen {{formula}}E_k: ky-5z = 5k - 60{{/formula}} mit {{formula}}k \in \mathbb{R}{{/formula}}.
41
42 (% style="list-style: alphastyle" start="5" %)
43 1. Alle Ebenen der Schar schneiden sich in einer Gerade. Weise nach, dass die Kante {{formula}}\overline{BC}{{/formula}} auf dieser Gerade liegt.
44 1. Ermittle diejenigen Werte von {{formula}}k{{/formula}}, für die {{formula}}E_k{{/formula}} mit der Seitenfläche {{formula}}ADS{{/formula}} mindestens einen Punkt gemeinsam hat.
45 1. Die Seitenfläche {{formula}}ADT{{/formula}} liegt in der Ebene {{formula}}F{{/formula}}. Gib einen Normalenvektor von {{formula}}F{{/formula}} an und begründe deine Angabe, ohne die Koordinaten von {{formula}}A{{/formula}} und {{formula}}D{{/formula}} zu verwenden. Bestimme denjenigen Wert von {{formula}}k{{/formula}}, für den {{formula}}E_k{{/formula}} senkrecht zu {{formula}}F{{/formula}} steht.
46 1. Die Doppelpyramide wird so um die {{formula}}x{{/formula}}-Achse gedreht, dass die bisher mit {{formula}}BCT{{/formula}} bezeichnete Seitenfläche in der {{formula}}xy{{/formula}}-Ebene liegt und der bisher mit {{formula}}S{{/formula}} bezeichnete Punkt eine positive {{formula}}y{{/formula}}-Koordinate hat. Bestimme diese {{formula}}y{{/formula}}-Koordinate und veranschauliche dein Vorgehen durch eine Skizze.
47 {{/aufgabe}}
48
49 {{aufgabe id="Gleichschenkliges Dreieck" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}}
50 [[image:Abb.1.PNG||width="150" style="float: right"]]
51 Für {{formula}}k \in \mathbb{R}{{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k{{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}}D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung 1).
52 **a)** Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
53
54
55
56
57
58 **b)** Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. Begründe, dass {{formula}}|\overline{MD_k}|= \Bigg|\left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right) \Bigg|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
59
60 Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}.
61 **c)** Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})//
62 {{/aufgabe}}