Änderungen von Dokument Lösung Oktaeder
Zuletzt geändert von akukin am 2025/08/14 17:11
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -4,13 +4,16 @@ 4 4 Kantenlänge des Würfels: {{formula}}\left|\overrightarrow{AC}\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{144}=12{{/formula}} 5 5 {{/detail}} 6 6 7 -{{detail summary="Erläuterung"}} 7 + 8 +{{detail summary="Erläuterung der Lösung"}} 8 8 Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht. 10 +<br> 9 9 {{formula}}A\left(1\left|2\right|1\right),C\left(-3\left|-6\right|9\right){{/formula}} 12 +<br> 10 10 {{formula}}\left|\overrightarrow{AC}\right|=\left|\overrightarrow{OC}-\overrightarrow{OA}\right|=\left|\left(\begin{array}{c} -3 \\ -6 \\ 9 \end{array}\right)-\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right)\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{(-4)^2+(-8)^2+8^2}=\sqrt{144}=12{{/formula}} 11 11 12 12 <br> 13 -Also ist die Kantenlänge des Würfels 12. 16 +Also ist die Kantenlänge des Würfels {{formula}}12{{/formula}}. 14 14 {{/detail}} 15 15 16 16 ... ... @@ -22,24 +22,27 @@ 22 22 Normalenvektor von {{formula}}H: \ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \ \text{mit} \ \left|\vec{n}\right|=3{{/formula}} 23 23 <br> 24 24 Damit ergeben sich die Koordinaten eines der beiden Eckpunkte, die nicht in {{formula}}H{{/formula}} liegen, zu 28 +<br> 25 25 {{formula}}\overrightarrow{OM}+2\cdot\vec{n}=\left(\begin{array}{c} 3\\ 0 \\ 9 \end{array}\right){{/formula}}. 26 26 27 27 {{/detail}} 28 28 29 -{{detail summary="Erläuterung"}} 33 + 34 +{{detail summary="Erläuterung der Lösung"}} 30 30 Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht. 31 31 <br> 32 -Da die Kantenlänge des Würfels 12 ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus 6 Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. 37 +Da die Kantenlänge des Würfels {{formula}}12{{/formula}} ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus {{formula}}6{{/formula}} Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. 33 33 <br> 34 34 Der Normalenvektor besteht aus den Koeffizienten der Gleichung der Ebene {{formula}}H{{/formula}} in Koordinatenform: 40 +<br> 35 35 {{formula}}H:\ 2x_1+x_2+2x_3=6 \ \Rightarrow\ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}} 36 36 <br> 37 37 Der Betrag von {{formula}}\vec{n}{{/formula}} ergibt: {{formula}}\left|\vec{n}\right|=\sqrt{2^2+1^2+2^2}=\sqrt{9}=3{{/formula}} 38 38 <br> 39 -Da die Kantenlänge des Würfels 12 ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: 45 +Da die Kantenlänge des Würfels {{formula}}12{{/formula}} ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: 40 40 41 41 {{formula}} 42 -\begin{align} 48 +\begin{align*} 43 43 \overrightarrow{OP_1}&=\overrightarrow{OM}+2\cdot\vec{n} =\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n} \\ 44 44 &=\frac{1}{2}\cdot 45 45 \left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ ... ... @@ -47,7 +47,7 @@ 47 47 \left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 48 48 &= 49 49 \left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)+\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} 3 \\ 0 \\ 9 \end{array}\right) 50 -\end{align} 56 +\end{align*} 51 51 {{/formula}} 52 52 53 53 Einer der beiden gesuchten Punkte lautet also {{formula}}P_1\left(3\left|0\right|9\right){{/formula}}. ... ... @@ -55,7 +55,7 @@ 55 55 Den anderen gesuchten Punkt (den unteren Punkt) {{formula}}P_2{{/formula}} erhält man, wenn man den doppelten Normalenvektor subtrahiert statt addiert: 56 56 57 57 {{formula}} 58 -\begin{align} 64 +\begin{align*} 59 59 \overrightarrow{OP_2}&=\overrightarrow{OM}-2\cdot\vec{n} =\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)-2\cdot\vec{n} \\ 60 60 &=\frac{1}{2}\cdot 61 61 \left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)-2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ ... ... @@ -63,7 +63,7 @@ 63 63 \left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)-2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 64 64 &= 65 65 \left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)-\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} -5 \\ -4 \\ 1 \end{array}\right) 66 -\end{align} 72 +\end{align*} 67 67 {{/formula}} 68 68 69 69