Zuletzt geändert von akukin am 2024/10/21 15:57

Von Version 8.2
bearbeitet von Holger Engels
am 2024/09/22 13:24
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 13.1
bearbeitet von akukin
am 2024/10/16 17:00
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -1,10 +1,10 @@
1 -{{aufgabe id="Kugeln mit negativen Zahlen" afb="" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_13.pdf]]" niveau="e" tags="iqb"}}
1 +{{aufgabe id="Kugeln mit negativen Zahlen" afb="" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_13.pdf]]" niveau="e" tags="iqb" cc="by"}}
2 2  In einem Behälter befinden sich fünf Kugeln, auf denen jeweils eine Zahl steht. Auf drei der Kugeln steht die Zahl 2, auf zwei der Kugeln die negative Zahl {{formula}}a{{/formula}}. Zweimal nacheinander wird eine Kugel zufällig entnommen und wieder zurückgelegt.
3 3  1. Gib im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term {{formula}}2\cdot\frac{3}{5}\cdot\frac{2}{5}{{/formula}} berechnet werden kann.
4 4  1. Die Zufallsgröße {{formula}}X{{/formula}} gibt das Produkt der Zahlen an, die auf den beiden entnommenen Kugeln stehen. Der Erwartungswert von {{formula}}X{{/formula}} ist 4. Bestimme den Wert von {{formula}}a{{/formula}}.
5 5  {{/aufgabe}}
6 6  
7 -{{aufgabe id="Zufallsgröße Tetraeder" afb="" kompetenzen="K1, K2, K3, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_20.pdf]]" niveau="e" tags="iqb"}}
7 +{{aufgabe id="Zufallsgröße Tetraeder" afb="" kompetenzen="K1, K2, K3, K4, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_20.pdf]]" niveau="e" tags="iqb" cc="by"}}
8 8  Betrachtet wird ein Tetraeder, bei dem die Seiten mit den Zahlen 1 bis 4 durchnummeriert sind. Beim Werfen des Tetraeders werden alle Zahlen mit gleicher Wahrscheinlichkeit erzielt. Das Tetraeder wird viermal geworfen. Die Zufallsgröße {{formula}}X{{/formula}} beschreibt die Anzahl der Würfe, bei denen die Zahl 1 erzielt wird. Die Wahrscheinlichkeitsverteilung von {{formula}}X{{/formula}} ist in der Abbildung 1 dargestellt.
9 9  
10 10  [[image:TetraederZufallsgroesse.PNG||width="700" style="display:block;margin-left:auto;margin-right:auto"]]
... ... @@ -13,4 +13,28 @@
13 13  1. Bei einem anderen Zufallsexperiment werden ein roter und ein grüner Würfel, bei denen die Seiten jeweils mit den Zahlen 1 bis 6 durchnummeriert sind, viermal gleichzeitig geworfen. Gib zu diesem Zufallsexperiment eine Zufallsgröße {{formula}}Z{{/formula}} an, die die gleiche Wahrscheinlichkeitsverteilung hat wie {{formula}}X{{/formula}} und begründe deine Angabe.
14 14  {{/aufgabe}}
15 15  
16 +{{aufgabe id="Glücksrad Zufallsgröße" afb="" kompetenzen="K1, K2, K3, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_16.pdf]]" niveau="e" tags="iqb" cc="by"}}
17 +Ein Glücksrad ist in 20 gleich große Sektoren unterteilt, die entweder blau oder gelb eingefärbt sind. Das Glücksrad wird 100-mal gedreht. Die binomialverteilte Zufallsgröße {{formula}}X{{/formula}} beschreibt, wie oft dabei die Farbe „Blau“, die binomialverteilte Zufallsgröße {{formula}}Y{{/formula}}, wie oft dabei die Farbe „Gelb“ erzielt wird.
18 +
19 +1. Begründe, dass {{formula}}X{{/formula}} und {{formula}}Y{{/formula}} die gleiche Standardabweichung haben.
20 +Teilaufgabe
21 +1. ((( Der Erwartungswert von {{formula}}X{{/formula}} ist ganzzahlig. Die Abbildung zeigt Werte der Wahrscheinlichkeitsverteilung von {{formula}}X{{/formula}}.
22 +[[image:GluecksradZufallsgroesse.PNG||width="450" style="display:block;margin-left:auto;margin-right:auto"]]
23 +Bestimme die Anzahl der blauen Sektoren des Glücksrads.
24 +)))
25 +
26 +{{/aufgabe}}
27 +
28 +{{aufgabe id="Würfel beschriften" afb="" kompetenzen="K1, K2, K3, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_19.pdf]]" niveau="e" tags="iqb" cc="by"}}
29 +Die drei nicht sichtbaren Seiten des abgebildeten Würfels sollen jeweils mit einer der Zahlen 3, 4, 5 oder 6 beschriftet werden. Dabei können Zahlen auch mehrfach verwendet werden.
30 +
31 +Nach der Beschriftung soll der Würfel folgende Eigenschaften haben:
32 +* Beim einmaligen Werfen ist der Erwartungswert für die erzielte Zahl gleich 4.
33 +* Auf den sechs Seiten des Würfels kommen genau drei verschiedene Zahlen vor.
34 +* Die Wahrscheinlichkeit dafür, dass beim zweimaligen Werfen des Würfels zweimal die gleiche Zahl erzielt wird, beträgt {{formula}}\frac{1}{2}{{/formula}}.
35 +
36 +Untersuche, ob es möglich ist, die nicht sichtbaren Seiten des Würfels so zu beschriften, dass er alle drei Eigenschaften besitzt.
37 +
38 +{{/aufgabe}}
39 +
16 16  {{seitenreflexion}}
GluecksradZufallsgroesse.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +280.7 KB
Inhalt