Änderungen von Dokument BPE 1.1 Rechnen mit Termen

Zuletzt geändert von Holger Engels am 2025/10/04 15:00

Von Version 34.1
bearbeitet von Holger Engels
am 2025/08/11 19:02
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 38.1
bearbeitet von Holger Engels
am 2025/10/04 14:55
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -24,37 +24,6 @@
24 24  1. {{formula}} (2a - 4b):2 + 3a + b {{/formula}}
25 25  {{/aufgabe}}
26 26  
27 -{{aufgabe id="Vereinfachung Potenz von Potenz" afb="I" kompetenzen="K5" zeit="1" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}}
28 -Gib die richtige Vereinfachung des Terms an:
29 -{{formula}} (2^3)^2 {{/formula}}
30 -
31 - ☐ {{formula}} 2^5 {{/formula}}
32 - ☐ {{formula}} 2^6 {{/formula}}
33 - ☐ {{formula}} 2^9 {{/formula}}
34 -{{/aufgabe}}
35 -
36 -{{aufgabe id="Vereinfachen Bruch" afb="I" kompetenzen="K5" Zeit="3" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}}
37 -Bestimme die einfachste Form der folgenden Terme:
38 -(%class="abc"%)
39 -1. {{formula}} 6b^3 : 3b^3 {{/formula}}
40 -1. {{formula}} \frac{x^m}{x^{m-3}} {{/formula}}
41 -{{/aufgabe}}
42 -
43 -== Potenzen ==
44 -
45 -{{aufgabe id="Vereinfachen Produkt" afb="I" kompetenzen="K5" Zeit="1" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}}
46 -Gib an, welche Vereinfachung richtig ist.
47 -{{formula}} 2x^2 \cdot x^3 {{/formula}}
48 -
49 - ☐ {{formula}} 2x^5 {{/formula}}
50 - ☐ {{formula}} 2x^6 {{/formula}}
51 - ☐ kann man nicht vereinfachen, weil die Exponenten unterschiedlich sind
52 -{{/aufgabe}}
53 -
54 -{{aufgabe id="Negative Potenz" afb="I" kompetenzen="K5" zeit="1" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}}
55 -Nenne die Potenzschreibweise von {{formula}} \frac{1}{8} {{/formula}}.
56 -{{/aufgabe}}
57 -
58 58  == Zusammenfassen ==
59 59  
60 60  {{aufgabe id="Vereinfachen B" afb="I" kompetenzen="K5" zeit="8" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}}
... ... @@ -140,8 +140,8 @@
140 140  Das Ergebnis einer Addition von Brüchen ist {{formula}}\frac{19}{24}{{/formula}}. Bestimme einen Rechenausdruck, wie die Summe zustande gekommen sein kann.
141 141  {{/aufgabe}}
142 142  
143 -{{aufgabe id="Was gehört zusammen?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
144 -Ordne die Sachverhalte in der linken Spalte den Termen in der rechten Spalte zu:
112 +{{aufgabe id="Was gehört zusammen?" afb="I" quelle="Team Mathebrücke" kompetenzen="K4" zeit="5" cc="by-sa" tags="mathebrücke"}}
113 +Bestimme zu jedem Term in der linken Spalte den passenden Sachverhalt die Sachverhalte in der rechten Spalte.
145 145  
146 146  (%class="border%)
147 147  |Zwei Strohhalme unterscheiden sich um 5cm. Der längere hat die Länge x. \\ Wenn man die Strohhalme hintereinander legt, haben sie eine Gesamtlänge von 60cm.|{{formula}}(x+5) + x = 60{{/formula}}
... ... @@ -154,7 +154,7 @@
154 154  |Johnny hat eine Spardose. Johnny hat 5 Schwestern. In der Spardose befinden sich 60€. \\An seine Schwestern muss er jeweils einen gleichen Geldbetrag überreichen. \\Am Schluss verbleiben ihm 12€.| {{formula}}5x + 12 =60{{/formula}}
155 155  {{/aufgabe}}
156 156  
157 -{{aufgabe id="Falsche Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
126 +{{aufgabe id="Falsche Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="K5" zeit="8" cc="by-sa" tags="mathebrücke"}}
158 158  Begründe jeweils anhand eines Zahlenbeispiels, dass folgende Termumformungen falsch sind. Gib, wenn es geht, die richtige Termumformung an.
159 159  (%class=abc%)
160 160  1. {{formula}}a-(b-c)=a-b-c{{/formula}}
... ... @@ -170,7 +170,7 @@
170 170  
171 171  {{/aufgabe}}
172 172  
173 -{{aufgabe id="Zuordnungsaufgabe Ausklammern,Faktorisieren" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
142 +{{aufgabe id="Zuordnungsaufgabe Ausklammern,Faktorisieren" afb="I" quelle="Team Mathebrücke" kompetenzen="K4" zeit="4" cc="by-sa" tags="mathebrücke"}}
174 174  Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein.
175 175  (%class="border%)
176 176  |Term |Auswahlmöglichkeiten |Lösungsfeld
... ... @@ -181,7 +181,7 @@
181 181  |5) {{formula}}5x^2 - 10x + 5{{/formula}} | a) {{formula}}5(x+1)^2{{/formula}} \\ b) {{formula}}5(x-1)^2{{/formula}} \\ c) {{formula}}5(x-1)(x+1){{/formula}} |
182 182  {{/aufgabe}}
183 183  
184 -{{aufgabe id="Zuordnungsaufgabe Binome" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
153 +{{aufgabe id="Zuordnungsaufgabe Binome" afb="I" quelle="Team Mathebrücke" kompetenzen="K4" zeit="5" cc="by-sa" tags="mathebrücke"}}
185 185  Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein.
186 186  (%class="border"%)
187 187  |Term |Auswahlmöglichkeiten |Lösungsfeld
... ... @@ -208,7 +208,7 @@
208 208  |8) {{formula}}10^x : 10^x{{/formula}} | a) {{formula}}10^{2x}{{/formula}} \\ b) {{formula}}1{{/formula}} \\ c) {{formula}}10{{/formula}} |
209 209  {{/aufgabe}}
210 210  
211 -{{aufgabe id="Binome ergänzen" afb="II" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
180 +{{aufgabe id="Binome ergänzen" afb="II" quelle="Team Mathebrücke" kompetenzen="K5" zeit="5" cc="by-sa" tags="mathebrücke"}}
212 212  Trage jeweils ein, welche Werte für die Symbole eingesetzt werden müssen, so dass die Termumformung richtig ist.
213 213  (%class="border"%)
214 214  |a) {{formula}}(x + \square)(x - \square) = x^2 - 25{{/formula}} | {{formula}}\square={{/formula}}
... ... @@ -218,18 +218,20 @@
218 218  |e) {{formula}}(4x - \square)(4x + \square) = \Delta - 49y^2{{/formula}} | {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
219 219  {{/aufgabe}}
220 220  
221 -{{aufgabe id="Fehlerteufel" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
190 +{{aufgabe id="Fehlerteufel" afb="I" quelle="Team Mathebrücke" kompetenzen="K5, K6" zeit="5" cc="by-sa" tags="mathebrücke"}}
222 222  Tim stellt seinem Nachhilfeschüler Kevin zwei Aufgaben.
223 223  Welcher der angegebenen Terme stellt die richtige Umformung dar?
224 224  Erläutere bei a), welche Fehler gemacht wurden.
225 -(%class=abc%)
226 -1. Löse die Klammer auf: {{formula}}(5ab)^3{{/formula}}
194 +(%class=abc style="line-height: 1.8em"%)
195 +1. Löse die Klammer auf:
196 +11. {{formula}}(5ab)^3{{/formula}}
227 227  11. {{formula}}5a^3b^3{{/formula}}
228 228  11. {{formula}}125a^3b{{/formula}}
229 229  11. {{formula}}125a^3b^3{{/formula}}
230 230  11. {{formula}}15a^3b^3{{/formula}}
231 231  11. {{formula}}5ab^3{{/formula}}
232 -1. Vereinfache soweit wie möglich: {{formula}}v^6:v^{n-6}{{/formula}}
202 +1. Vereinfache soweit wie möglich:
203 +11. {{formula}}v^6:v^{n-6}{{/formula}}
233 233  11. {{formula}}v^{-n}{{/formula}}
234 234  11. {{formula}}v^{n+12}{{/formula}}
235 235  11. {{formula}}v^{-1+n}{{/formula}}
... ... @@ -240,37 +240,26 @@
240 240  {{aufgabe id="Potenzen mit negativen Exponenten" afb="III" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
241 241  Tim überlegt: Wenn {{formula}}2^{-1}{{/formula}} dasselbe ist wie {{formula}}\frac{1}{2}{{/formula}}, dann ist doch {{formula}}3^{-2}{{/formula}} dasselbe wie {{formula}}\frac{2}{3}{{/formula}}.
242 242  Welches Muster liegt dieser Vorgehensweise zugrunde? Was wäre demnach {{formula}}10^{-2}{{/formula}}?
243 -Hat Tim Recht?
244 -
214 +Begründe, ob Tim Recht hat.
245 245  {{/aufgabe}}
246 246  
247 -{{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
248 -Fasse zusammen:
249 -1.a) {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}}
250 -1.b) {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}}
251 -1.c) {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}}
252 -
253 -Wende die Potenzgesetze an:
254 -2.a) {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}}
255 -
256 -2.b) {{formula}}-10a^2 + 2a(a+2){{/formula}}
257 -
258 -2.c) {{formula}}y^3 \cdot (-x)^3{{/formula}}
259 -
260 -2.d) {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}}
261 -
262 -2.e) {{formula}}\frac{b^{n+2}}{b^n}{{/formula}}
263 -
264 -2.f) {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}}
265 -
266 -2.g) {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}}
267 -
268 -2.h) {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}}
269 -
270 -2.i) {{formula}}(-2y)^3{{/formula}}
271 -
272 -2.j) {{formula}}(5a^3b^2)^3{{/formula}}
273 -
217 +{{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="K5" zeit="8" cc="by-sa" tags="mathebrücke"}}
218 +(%class=abc%)
219 +1. Fasse zusammen:
220 +11. {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}}
221 +11. {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}}
222 +11. {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}}
223 +1. Wende die Potenzgesetze an:
224 +11. {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}}
225 +11. {{formula}}-10a^2 + 2a(a+2){{/formula}}
226 +11. {{formula}}y^3 \cdot (-x)^3{{/formula}}
227 +11. {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}}
228 +11. {{formula}}\frac{b^{n+2}}{b^n}{{/formula}}
229 +11. {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}}
230 +11. {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}}
231 +11. {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}}
232 +11. {{formula}}(-2y)^3{{/formula}}
233 +11. {{formula}}(5a^3b^2)^3{{/formula}}
274 274  {{/aufgabe}}
275 275  
276 276  {{aufgabe id="Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
... ... @@ -299,7 +299,7 @@
299 299  {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
300 300  Wähle die richtige{{{(n)}}} Aussage{{{(n)}}} aus und begründe deine Entscheidung.
301 301  
302 -Dividiere 30 durch {{formula}}\frac{1}{2}{{/formula}} und addiere zum Ergebnis 15. Was erhältst du?
262 +Dividiere 30 durch {{formula}}\frac{1}{2}{{/formula}} und addiere zum Ergebnis 15. Gib das richtige Ergebni an. Begründe deine Entscheidung.
303 303  
304 304  ☐ 30, weil {{formula}}15 + 15 = 30{{/formula}}
305 305  ☐ 75, weil {{formula}}15 + 60 = 75{{/formula}}