Wiki-Quellcode von Lösung Spielzeug-Holzbrücke Symmetrie
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | I: Diejenigen Teile der Graphen von {{formula}}g_l{{/formula}} und {{formula}}g_r{{/formula}} , die im Längsschnitt die oberen Randlinien des linken bzw. rechten Bauteils darstellen, liegen nicht symmetrisch bezüglich des Koordinatenursprungs. Damit ist die Aussage falsch. |
2 | |||
3 | II:Diejenigen Teile der Graphen von {{formula}}g_l{{/formula}} und {{formula}}g_r{{/formula}} , die im Längsschnitt die oberen Randlinien des linken bzw. rechten Bauteils darstellen, liegen symmetrisch bezüglich der y-Achse. Also gilt {{formula}}g_l(-1-x)=g_r(1+x){{/formula}} für {{formula}}0\leq y \leq 1{{/formula}} und damit {{formula}} g_l(-1+x)=g_r(1-x){{/formula}} für {{formula}}-1\leq x \leq 0{{/formula}}. Folglich ist die Aussage richtig. |