Änderungen von Dokument BPE 1 Einheitsübergreifend
Zuletzt geändert von Holger Engels am 2025/01/12 21:23
Von Version 31.1
bearbeitet von Niklas Wunder
am 2024/10/15 13:54
am 2024/10/15 13:54
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 30.1
bearbeitet von Niklas Wunder
am 2024/10/15 13:53
am 2024/10/15 13:53
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -13,7 +13,7 @@ 13 13 {{/aufgabe}} 14 14 15 15 {{aufgabe id="Gitterpunkte" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 16 -Legt man **rechtwinklige Dreiecke** mit den einer waagerechtenKatheten {{formula}} a {{/formula}} undsenkrechten Katheten{{formula}}b{{/formula}} so auf ein quadratisches Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**.16 +Legt man **rechtwinklige Dreiecke** mit den einer Katheten {{formula}} a {{/formula}} und {{formula}}b{{/formula}} so auf ein quadratisches Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**. 17 17 18 18 Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 19 19