Änderungen von Dokument BPE 1 Einheitsübergreifend
Zuletzt geändert von Holger Engels am 2025/01/12 21:23
Von Version 9.1
bearbeitet von akukin
am 2023/11/27 22:38
am 2023/11/27 22:38
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 29.1
bearbeitet von Niklas Wunder
am 2024/10/15 13:46
am 2024/10/15 13:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (3 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Titel
-
... ... @@ -1,1 +1,1 @@ 1 -BPE _11 +BPE 1 Einheitsübergreifend - Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. akukin1 +XWiki.niklaswunder - Inhalt
-
... ... @@ -1,58 +1,68 @@ 1 -{{aufgabe id="Gitterpunkte" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 1 +{{aufgabe id="" afb="III" zeit="20" kompetenzen="K2, K5" tags="" quelle="Torben Würth" cc="BY-SA"}} 2 +Gegeben ist die Funktion {{formula}}f(x)=x^{\frac{2}{6}} {{/formula}} 3 + 1. Gib den Funktionsterm in vereinfachter Schreiweise an. 4 + 1. Gib den Funktionsterm als Wurzelfunktion an. 5 + 1. Bestimme die maximale Definitionsmenge sowie den Wertebereich. 6 + 1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall. 7 + 8 + ((((% class="border" style="width:100%" %) 9 +|={{formula}}x{{/formula}}| | | | | | | | | | | | | | | | | | 10 +|={{formula}}f(x){{/formula}}|||||||||||||||||| 11 +))) 12 + [[image:Achsenkreuz.svg||width="600px"]] 13 +{{/aufgabe}} 14 + 15 +{{aufgabe id="Gitterpunkte" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 2 2 Legt man **rechtwinklige Dreiecke** so auf ein Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**. 3 3 4 -{{lehrende}} 5 -**__Variante 1:__ Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe:** 6 -Finden Sie für solche Dreiecke allgemeine Formeln, mit denen sich 7 -*die Anzahl der Gitterpunkte auf dem **Rand** 8 -*die Anzahl der Gitterpunkte im **Inneren des Dreiecks** 9 -**in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt. 10 -//Der horizontale/vertikale Abstand der Gitterpunkte beträgt eine Längeneinheit (1 LE).// 11 - 12 - 13 -**__Variante 2:__ Kleinere Klassenarbeitsaufgabe, Richtige Lösung finden** 14 14 Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 15 - 19 + 16 16 Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} a {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 21 + 17 17 Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg). 18 -(% style="color:black" %) 19 -**__Variante 3:__ Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen** 23 + 24 +Hinweis: 15.10.2024 Ich gehe davon aus, das hier ein Fehler in der Aufgabenstellung ist. Es ist wichtig zu sagen, dass a und b natürliche Zahlen sind, da sonst auch gedrehte Dreiecke mit den drei Eckpunkten auf Gitterpunkten möglich wären. Desweiteren spricht Schüler 2 von Seitenlängen a und a. Das sollte Längen a und b heißen. 25 + 26 +{{lehrende}} 27 +**Variante 1:** Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe: 28 +Finde für solche Dreiecke allgemeine Formeln, mit denen sich 29 +* die Anzahl der Gitterpunkte auf dem **Rand** 30 +* die Anzahl der Gitterpunkte im **Inneren des Dreiecks in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt. 31 +//Der horizontale/vertikale Abstand der Gitterpunkte beträgt eine Längeneinheit (1 LE).// 32 + 33 +**Variante 2:** Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen 20 20 Jemand behauptet: Ein solches rechtwinkliges Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} besitzt {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 21 21 Zeige, dass diese Behauptung richtig ist. 22 22 {{/lehrende}} 23 23 {{/aufgabe}} 24 24 25 -{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 26 - 39 +{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="III" zeit="20" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 27 27 Die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines Vielecks werden Diagonalen genannt. 28 28 29 -{{lehrende}} 30 -**__Variante 1:__ Offene Aufgabe für den Unterricht & für die Klassenarbeit** 31 -Wie viele Diagonalen hat ein n-Eck? 32 - 33 -**__Variante 2:__ Kleinere Klassenarbeitsvariante, Vergleich von Strategien, Verallgemeinerung** 34 34 Ella und Jan haben ausgehend von einem 9-Eck zwei verschiedene Wege gefunden, um die Anzahl der Diagonalen zu berechnen: 35 35 36 36 Ella: {{formula}} 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27{{/formula}} 37 37 Jan: {{formula}} \frac{9 \cdot 6}{2}{{/formula}} 38 - 46 + 39 39 Wie sind Ella und Jan auf ihre Formeln gekommen? Analysiere und vergleiche die beiden Lösungsbeispiele. 40 - 48 + 41 41 Übertrage beide Formeln für das 9-Eck auf eine allgemeine Formel für das n-Eck. 50 + 51 +{{lehrende}} 52 +**Variante 1:** Offene Aufgabe für den Unterricht & für die Klassenarbeit 53 +Wie viele Diagonalen hat ein n-Eck? 42 42 {{/lehrende}} 43 - 44 -{{aufgabe id="Fussball" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 45 -Inmitten von wie vielen Fußbällen sitzen 46 -Franz Beckenbauer und Oliver Bierhoff 47 -hier im Borussia-Park von Mönchengladbach? 48 - 49 -Die Spielfläche wurde vor der WM 2006 zu 50 -PR-Zwecken von 320 Mitarbeitern einer 51 -großen deutschen Bank komplett mit 52 -Fußbällen belegt. 53 - 54 -a) Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle. 55 - 56 -b) Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. 57 -Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. 58 58 {{/aufgabe}} 56 + 57 +{{aufgabe id="Fussball" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 58 + 59 +Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach? 60 + 61 +Die Spielfläche wurde vor der WM 2006 zu PR-Zwecken von 320 Mitarbeitern einer großen deutschen Bank komplett mit Fußbällen belegt. 62 + 63 +1. Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle. 64 +1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. 65 +{{/aufgabe}} 66 + 67 +{{seitenreflexion/}} 68 +
- Achsenkreuz.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.torbenwuerth - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Inhalt
-
... ... @@ -1,0 +1,1 @@ 1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="914" height="737"><defs><clipPath id="pwyNrvvZqofS"><path fill="none" stroke="none" d=" M 0 0 L 914 0 L 914 737 L 0 737 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#pwyNrvvZqofS)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="914" height="737" fill-opacity="1"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 2.5 L 482.5 737.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 478.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 486.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 375.5 L 912.5 375.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 371.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 379.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 32.5 375.5 L 32.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 82.5 375.5 L 82.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 132.5 375.5 L 132.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 182.5 375.5 L 182.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 232.5 375.5 L 232.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 282.5 375.5 L 282.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 332.5 375.5 L 332.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 382.5 375.5 L 382.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 432.5 375.5 L 432.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 532.5 375.5 L 532.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 582.5 375.5 L 582.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 632.5 375.5 L 632.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 682.5 375.5 L 682.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 732.5 375.5 L 732.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 782.5 375.5 L 782.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 832.5 375.5 L 832.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 882.5 375.5 L 882.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 725.5 L 482.5 725.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 675.5 L 482.5 675.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 625.5 L 482.5 625.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 575.5 L 482.5 575.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 525.5 L 482.5 525.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 475.5 L 482.5 475.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 425.5 L 482.5 425.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 325.5 L 482.5 325.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 275.5 L 482.5 275.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 225.5 L 482.5 225.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 175.5 L 482.5 175.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 125.5 L 482.5 125.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 75.5 L 482.5 75.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 25.5 L 482.5 25.5" stroke-opacity="1" stroke-miterlimit="10"/></g></g></svg>