Aufgabe 1 Gitterpunkte 𝕃
Legt man rechtwinklige Dreiecke so auf ein Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke kein einziger Gitterpunkt auf der Hypotenuse.
AFB k.A. | Kompetenzen k.A. | Bearbeitungszeit k.A. |
Quelle Problemlösegruppe | Lizenz CC BY-SA |
Aufgabe 2 Verbindungsstrecken von Eckpunkten 𝕃
Die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines Vielecks werden Diagonalen genannt.
Das Makro [lehrende] ist ein eigenständiges Makro und kann nicht inline verwendet werden. Klicke auf diese Nachricht, um Details zu erfahren.
AFB k.A. | Kompetenzen k.A. | Bearbeitungszeit k.A. |
Quelle Problemlösegruppe | Lizenz CC BY-SA |