Änderungen von Dokument BPE 1.5 Potenzen
Zuletzt geändert von Martin Rathgeb am 2024/12/11 09:44
Von Version 34.1
bearbeitet von Ronja Franke
am 2024/07/19 15:30
am 2024/07/19 15:30
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 64.1
bearbeitet von Holger Engels
am 2024/10/15 14:13
am 2024/10/15 14:13
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Objekte (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.r franke1 +XWiki.holgerengels - Inhalt
-
... ... @@ -1,10 +1,57 @@ 1 1 {{seiteninhalt/}} 2 2 3 3 [[Kompetenzen.K1]] Ich kann Potenzen mit rationalen Exponenten als Wurzel- oder Bruchausdrücke deuten 4 -[[Kompetenzen.K5]]; [[Kompetenzen.K4]] Ich kann zwischen den Darstellungsformen Wurzel und rationaler Exponent wechseln 5 -[[Kompetenzen.K1]], [[Kompetenzen.K5]] Ich kann an Beispielen erläutern, dass die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten gelten 4 +[[Kompetenzen.K5]] [[Kompetenzen.K4]] Ich kann zwischen den Darstellungsformen Wurzel und rationaler Exponent wechseln 6 6 [[Kompetenzen.K5]] Ich kann die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten anwenden 6 +[[Kompetenzen.K1]] [[Kompetenzen.K5]] Ich kann an Beispielen erläutern, dass die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten gelten 7 7 8 +* Potenzgesetze anwenden 9 +* Wechsel Wurzel und Potenz 10 +* vereinfachen 11 +* negative Exponenten mit Beispiel erläutern 12 +* Folge negative Exponenten 13 +* Folge rationale Exponenten 14 +* Folge reelle Exponenten 15 + 16 +{{aufgabe id="Negative Exponenten" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 17 +Führe fort .. 18 + 19 +| {{formula}}2^3{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^0{{/formula}} | {{formula}}2^{-1}{{/formula}} | {{formula}}2^{-2}{{/formula}} 20 +| 8 | 4 | 2 | | | | 21 +{{/aufgabe}} 22 + 23 +{{aufgabe id="Negative Exponenten Erklärung" afb="II" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 24 +Erkläre {{formula}}2^{-2} =\frac{1}{4}{{/formula}} mithilfe des Potenzgesetzes {{formula}}a^n:a^m = a^{n-m}{{/formula}}, indem du für //n// und //m// beliebige natürliche Zahlen einsetzt, für die gilt: {{formula}}n-m=-2{{/formula}}. 25 +{{/aufgabe}} 26 + 27 +{{aufgabe id="Rationale Exponenten" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 28 +Führe fort .. 29 + 30 +| {{formula}}2^4{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^{1/2}{{/formula}} | {{formula}}2^{1/4}{{/formula}} 31 +| 16 | 4 | 2 | | | | 32 +{{/aufgabe}} 33 + 34 +{{aufgabe id="Rationale Exponenten Erklärung" afb="II" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 35 +Erkläre {{formula}}\left(2^{1/2}\right)^2 = \left(\sqrt{2}\right)^{2} = 2{{/formula}} mithilfe des Potenzgesetzes {{formula}}\left(a^{n}\right)^{m} = a^{n\cdot m}{{/formula}}. 36 +{{/aufgabe}} 37 + 38 +{{aufgabe id="Potenzgesetze" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="6"}} 39 +Vereinfache mithilfe der Potenzgesetze: 40 +1. {{formula}}\left(2^{3}\right)^{2}{{/formula}} 41 +1. {{formula}}\left(6b^6\right):\left(3b^3\right){{/formula}} 42 +1. {{formula}}2^x\cdot2^{3-x}{{/formula}} 43 +1. {{formula}}\frac{1}{8}\cdot2^{3+x}{{/formula}} 44 +1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}{{/formula}} 45 +{{/aufgabe}} 46 + 47 +{{aufgabe id="Lücken" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 48 +Fülle die Lücken aus: 49 +1. {{formula}}x^2\cdot x^\square=x^5{{/formula}}\\ 50 +1. {{formula}}x^\square=\left(\frac{1}{x}\right)^2\cdot x^{-1} {{/formula}}\\ 51 +1. {{formula}}x^{27}=\left(x^{-3}\right)^\square{{/formula}}\\ 52 +1. {{formula}}\left(\frac{x^\square}{x^{1/3}}\right)^7=x^5{{/formula}} 53 +{{/aufgabe}} 54 + 8 8 {{aufgabe id="Pythagoreisches Tripel" afb="II" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA" zeit="40"}} 9 9 Gegeben ist ein rechtwinkliges Dreieck mit den Seitenlängen a, b und c. 10 10 Besitzen alle drei Seitenlängen **ganzzahlige Werte**, so nennt man die Kombination (a;b;c) **pythagoreisches Tripel**. ... ... @@ -12,29 +12,32 @@ 12 12 Erläutere, weshalb es nur ein pythagoreisches Tripel gibt, bei dem eine Seitenlänge den Wert 4 besitzt. 13 13 {{/aufgabe}} 14 14 15 -{{aufgabe id="rationale Potenzen" afb="I" kompetenzen="" tags="rationale Potenzen" quelle="Ronja Franke, Katharina Schneider" cc="BY-SA" zeit="15"}} 16 ---noch unvollständig und ohne Lösung-- 17 -1. **Definition und Beispiel** 62 +{{aufgabe id="Rationale Potenzen-Potenzgesetze beweisen" afb="I" kompetenzen="" quelle="Ronja Franke, Katharina Schneider" cc="BY-SA" zeit="15"}} 63 +1. (((**Definition und Beispiel** 18 18 Erkläre, was ein rationaler Exponent ist. 19 19 Gib ein Beispiel für eine Potenz mit einem rationalen Exponenten und vereinfache diese Potenz. 20 - 21 -1. **Eigenschaften** 66 +))) 67 +1. (((**Eigenschaften** 22 22 Zeige, dass die folgenden Regeln auch für rationale Exponenten gelten und gib Beispiele: 23 23 - {{formula}}\((a^m)^n = a^{m \cdot n}\){{/formula}} 24 24 - {{formula}}\(a^{m+n} = a^m \cdot a^n\){{/formula}} 25 25 - {{formula}}\(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\){{/formula}} 26 - 27 - 2. **Wurzeln und Exponenten**72 +))) 73 +1. (((**Wurzeln und Exponenten** 28 28 Zeige, wie man mit Hilfe rationaler Exponenten Wurzeln darstellen kann (z.B. {{formula}}\sqrt[3]{a}\{{/formula}} als {{formula}}\(a^{1/3}\){{/formula}}). 29 29 Berechne die dritte Wurzel von 27 und die vierte Wurzel von 81, indem du rationale Exponenten verwendest. 76 +))) 77 +{{/aufgabe}} 30 30 31 -3. **Komplexere Ausdrücke** 32 -Vereinfache den Ausdruck {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}} mit Hilfe der Potenzgesetze. Gib die verwendeten Potenzgesetze an. 33 - 34 -4. **Transfer** 79 +{{aufgabe id="Rationale Potenzen-komplexe Ausdrücke vereinfachen" afb="I" kompetenzen="" quelle="Ronja Franke, Katharina Schneider" cc="BY-SA" zeit="15"}} 80 +1. (((**Komplexere Ausdrücke** 81 +Vereinfache die Ausdrücke 82 +a) {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}} 83 +b) {{formula}}\((7^{1/3} \cdot 7^{1/4}) / (3^{7/12})\){{/formula}} 84 +mit Hilfe der Potenzgesetze. Gib die verwendeten Potenzgesetze an. 85 +))) 86 +1. (((**Transfer** 35 35 Entwickle eine eigene Aufgabe zu rationalen Exponenten und stelle sie einem Mitschüler. Löse die Aufgabe selbst und prüfe, ob dein Mitschüler zu demselben Ergebnis kommt. 36 - 37 - 38 - 39 - 88 +))) 40 40 {{/aufgabe}} 90 +
- XWiki.XWikiComments[0]
-
- Autor
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Kommentar
-
... ... @@ -1,0 +1,1 @@ 1 +Die Aufgabe [[Rationale Exponenten>>||anchor="Rationale Potenzen"]] könnte evtl. in mehrere Aufgaben gesplittet werden, für die dann Kompetenzen und Anforderungsbereiche gezielt zugewiesen werden können. - Datum
-
... ... @@ -1,0 +1,1 @@ 1 +2024-07-22 15:34:32.122