Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 106.1
bearbeitet von Martin Rathgeb
am 2025/01/05 01:29
am 2025/01/05 01:29
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 108.1
bearbeitet von Martin Rathgeb
am 2025/01/05 14:49
am 2025/01/05 14:49
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -64,7 +64,7 @@ 64 64 65 65 {{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}} 66 66 Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben der Verschiebung und der Streckung in Richtung einer Koordinatenachse bzw. der Spiegelung an einer Koordinatenachse gibt es eine weitere besondere Transformation, nämlich die //Spiegelung an der ersten Winkelhalbierenden//, das ist die Gerade mit der Gleichung {{formula}}y=x{{/formula}}. Diese Spiegelung bewirkt den Koordinatentausch {{formula}}(x|y)\mapsto (y|x){{/formula}}, d.h., die Umkehrung {{formula}}y\mapsto x{{/formula}} der Zuordnung {{formula}}x\mapsto y{{/formula}}. 67 -Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}} ),diesichnichtalsFunktionsgraphverstehen lässt; das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen,diesichnichtals //ein//Funktionsgraphverstehen lassen. Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst dieersteGleichungnach //x//auf,{{formula}}x=\pm \sqrt{y}{{/formula}},und tauscht dann in dieser Gleichung die Variablen//x// und //y//gegenseitigaus,also{{formula}}y=\pm \sqrt{x}{{/formula}}.67 +Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}, ein Funktionsgraph) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}}, kein Funktionsgraph); das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}, ein Funktionsgraph) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen (kein Funktionsgraph). Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst die Gleichung {{formula}}y=x^2{{/formula}} nach {{formula}}x{{/formula}} auf und tauscht dann in der erhaltenen Gleichung {{formula}}x=\pm \sqrt{y}{{/formula}} noch die Variablen gegeneinander aus ({{formula}}y=\pm \sqrt{x}{{/formula}}). 68 68 69 69 Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}. 70 70 [[image:Einheitsuebergreifend2.png||width="400px"]]