Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 143.1
bearbeitet von Martin Rathgeb
am 2025/01/06 23:56
am 2025/01/06 23:56
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 161.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:58
am 2025/01/07 00:58
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,15 +1,42 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 4 -//Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 3 +{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 4 +(% class="abc" %) 5 +1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 5 5 (% class="border slim" %) 7 +| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 8 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 9 +| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 10 + 11 +))) 12 +1. (((Nenne die Werte der charakteristischen Größen der Parabel: 13 +1. (((//Lage//. 14 +i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel 15 +ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}} 16 +iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 17 +))) 18 +1. (((//Kovariation//. 19 +i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}} 20 +ii. Krümmung {{formula}}a{{/formula}} 21 +))) 22 +))) 23 +{{/aufgabe}} 24 + 25 +{{aufgabe id="Darstellungswechsel nach Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 26 +Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefern Funktionsgraphen mit Parabelgleichung in Scheitelform. Ausmultiplizieren liefert die zugehörige Hauptform, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur Produktform ist schwieriger. 27 + 28 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 29 +(% class="border slim" %) 6 6 |[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 7 7 8 -//Verfahren statt Formel //(Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt erdie Methode zur Lösung quadratischer Gleichungen vor.32 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 9 9 (% class="border slim" %) 10 -|[[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] 34 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 35 + 36 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 37 + 11 11 (% class="abc" %) 12 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle ( womöglich) die Produktform der Funktionsgleichung.39 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung. 13 13 1. {{formula}}f(x)=x^2-7x+12{{/formula}} 14 14 1. {{formula}}f(x)=x^2-14x+22{{/formula}} 15 15 1. {{formula}}f(x)=x^2-7x+12{{/formula}} ... ... @@ -22,28 +22,6 @@ 22 22 //Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 23 23 {{/aufgabe}} 24 24 25 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 26 -IN PROGRESS 27 -(% class="abc" %) 28 -1. (((Fülle in folgenden Darstellungsformen einer Geraden die Lücken. 29 -(% class="border slim" %) 30 -| |{{formula}}y=\square 3\cdot (x-1)+\square{{/formula}} | 31 -|{{formula}}y=\square \cdot (x-2){{/formula}} |Graph: fallende Gerade in KoorSyS ohne Skalierung |{{formula}}y=\square \cdot x+\square{{/formula}} 32 -| |{{formula}}\frac{x}{\square}+\frac{y}{\square}=1{{/formula}} | 33 - 34 -))) 35 -1. (((Nenne die Werte der charakteristischen Größen der Geraden: 36 -1. (((//Lage//. 37 -i) y-Achsenabschnitt {{formula}}b{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 38 -ii) x-Achsenabschnitt {{formula}}x_0{{/formula}} mit x-Achsenschnittpunkt {{formula}}S_x=N{{/formula}} 39 -))) 40 -1. (((//Kovariation//. 41 -i. Steigung {{formula}}m{{/formula}} 42 -ii. Krümmung {{formula}}a{{/formula}} 43 -))) 44 -))) 45 -{{/aufgabe}} 46 - 47 47 {{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 48 48 IN PROGRESS 49 49 In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3.