Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 197.1
bearbeitet von Martin Rathgeb
am 2025/01/07 22:37
am 2025/01/07 22:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 201.1
bearbeitet von Martin Rathgeb
am 2025/01/11 23:20
am 2025/01/11 23:20
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,11 +3,7 @@ 3 3 {{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4, K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}} 4 4 (% class="abc" %) 5 5 1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 6 -(% class="border slim" %) 7 -| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 8 -|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 9 -| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 10 - 6 +[[image:Arithmagon Potenzfunktionen Formen.svg||width="500"]] 11 11 ))) 12 12 1. (((Nenne die Werte der charakteristischen Größen der Parabel: 13 13 1. (((//Lage//. ... ... @@ -37,7 +37,7 @@ 37 37 (% class="border" %) 38 38 |Nr. |Von |Zu |Parameter 1 |Parameter 2 39 39 |1 |Scheitelform |pq-Form |{{formula}}p = -2x_S{{/formula}} |{{formula}}q = x_S^2 + y_S^*{{/formula}} 40 -|2 | pq-Form |Scheitelform |{{formula}}x_S = -\frac{p}{2}{{/formula}} |{{formula}}y_S^* = -\frac{p^2}{4} + q{{/formula}}36 +|2 |Gestreckte Normalform |Scheitelform |{{formula}}x_S = -\frac{p}{2}{{/formula}} |{{formula}}y_S^* = -\frac{p^2}{4} + q{{/formula}} 41 41 |3 |Scheitelform |Produktform |{{formula}}x_1 = x_S - \sqrt{-y_S^*}{{/formula}} |{{formula}}x_2 = x_S + \sqrt{-y_S^*}{{/formula}} 42 42 |4 |pq-Form |Produktform |{{formula}}x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}{{/formula}} |{{formula}}x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}{{/formula}} 43 43 |5 |Produktform |pq-Form |{{formula}}p = -(x_1 + x_2){{/formula}} |{{formula}}q = x_1 x_2{{/formula}}
- Arithmagon Potenzfunktionen Formen.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +300.3 KB - Inhalt