Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 150.1
bearbeitet von Martin Rathgeb
am 2024/10/14 23:05
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 133.1
bearbeitet von Martin Rathgeb
am 2024/10/14 22:00
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -16,29 +16,21 @@
16 16  (% style="list-style: alphastyle" %)
17 17  1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle.
18 18  ((((% class="border" %)
19 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10|||||||||
20 -|={{formula}}f(x){{/formula}}||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000
19 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}}
20 +|={{formula}}f(x){{/formula}}|||||||||||||||||||||||
21 +|={{formula}}g(x){{/formula}}|||||||||||||||||||||||
21 21  )))
22 22  1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle.
23 23  ((((% class="border" %)
24 -|={{formula}}x{{/formula}}|0|1|4|9|16|25|36|49|64|81|100|||||||||
25 -|={{formula}}g(x){{/formula}}||||||||||||20|30|40|50|60|70|80|90|100
25 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}}
26 +|={{formula}}f(x){{/formula}}|||||||||||||||||||||||
27 +|={{formula}}g(x){{/formula}}|||||||||||||||||||||||
26 26  )))
27 27  1. Erkennst du eine Symmetrie?
28 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme
29 -(((
30 -1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
31 -1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
32 -)))
33 -1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche
34 -(((
35 -1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
36 -1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
37 -)))
38 38  {{/aufgabe}}
39 39  
40 40  {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
41 -Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}}. Untersuche die Funktion im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür folgende Wertetabellen. Erkennst du eine Symmetrie?
33 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}}. Untersuche //f// im Hinblick auf ihr Randverhalten und ihre Wertemenge anhand folgender Wertetabellen. Erkennst du eine Symmetrie?
42 42  
43 43  (% style="list-style: alphastyle" %)
44 44  1. Randverhalten: Verhalten im Unendlichen
... ... @@ -61,7 +61,7 @@
61 61  )))
62 62  1.1 Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}})
63 63  ((((% class="border" %)
64 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}}
56 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{+6}{{/formula}}| {{formula}}+10^{+9}{{/formula}}| {{formula}}+10^{+12}{{/formula}}
65 65  |={{formula}}f(x){{/formula}}|||||||
66 66  )))
67 67  {{/aufgabe}}
... ... @@ -82,7 +82,7 @@
82 82  1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}}
83 83  {{/aufgabe}}
84 84  
85 -{{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
77 +{{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="??" cc="BY-SA"}}
86 86  Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}.
87 87  
88 88  (% style="list-style: alphastyle" %)