Wiki-Quellcode von Lösung Symmetrie untersuchen
Version 1.1 von Holger Engels am 2024/10/25 23:06
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | (% class="noborder" %) | ||
2 | |(% colspan="2" %)((( | ||
3 | (% style="list-style:alphastyle" %) | ||
4 | 1. {{formula}}f(x)=3x+1{{/formula}}))) | ||
5 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow 3x+1=3(-x)+1{{/formula}} | ||
6 | {{formula}}\Rightarrow 3x+1\neq-3x+1{{/formula}} ↯ | ||
7 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow 3x+1=-(3(-x)+1){{/formula}} | ||
8 | {{formula}}\Rightarrow 3x+1\neq3x-1{{/formula}} ↯ | ||
9 | ))) | ||
10 | |(% colspan="2" %)((( | ||
11 | (% style="list-style:alphastyle" start="2" %) | ||
12 | 1. {{formula}}f(x)=7{{/formula}}))) | ||
13 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow 7=7{{/formula}} ✓ | ||
14 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow 7=-7{{/formula}} ↯ | ||
15 | ))) | ||
16 | |(% colspan="2" %)((( | ||
17 | (% style="list-style:alphastyle" start="3" %) | ||
18 | 1. {{formula}}f(x)=4x^3-8x+2{{/formula}}))) | ||
19 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow 3x^3-8x+2=3(-x)^3-8(-x)+2{{/formula}} | ||
20 | {{formula}}\Rightarrow 3x^3-8x+2\neq-3x^3+8x+2{{/formula}} ↯ | ||
21 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow 3x^3-8x+2=-(3(-x)^3-8(-x)+2){{/formula}} | ||
22 | {{formula}}\Rightarrow 3x^3-8x+2\neq3x^3-8x-2{{/formula}} ↯ | ||
23 | ))) | ||
24 | |(% colspan="2" %)((( | ||
25 | (% style="list-style:alphastyle" start="4" %) | ||
26 | 1. {{formula}}f(x)=-2x^4-9x^2+3{{/formula}}))) | ||
27 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow -2x^4-9x^2+3=-2(-x)^4-9(-x)^2+3{{/formula}} | ||
28 | {{formula}}\Rightarrow -2x^4-9x^2+3=-2x^4-9x^2+3{{/formula}} ✓ | ||
29 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow -2x^4-9x^2+3=-(-2(-x)^4-9(-x)^2+3){{/formula}} | ||
30 | {{formula}}\Rightarrow -2x^4-9x^2+3 \neq 2x^4+9x^2-3{{/formula}} ↯ | ||
31 | ))) | ||
32 | |(% colspan="2" %)((( | ||
33 | (% style="list-style:alphastyle" start="5" %) | ||
34 | 1. {{formula}}f(x)=(x^2-2)^3{{/formula}}))) | ||
35 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow (x^2-2)^3=((-x)^2-2)^3{{/formula}} | ||
36 | {{formula}}\Rightarrow (x^2-2)^3=(x^2-2)^3{{/formula}} ✓ | ||
37 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow (x^2-2)^3=-(((-x)^2-2)^3){{/formula}} | ||
38 | {{formula}}\Rightarrow (x^2-2)^3\neq-(x^2-2)^3{{/formula}} ↯ | ||
39 | ))) | ||
40 | |(% colspan="2" %)((( | ||
41 | (% style="list-style:alphastyle" start="6" %) | ||
42 | 1. {{formula}}f(x)=x^4(x^3-3)\cdot (1-x){{/formula}}))) | ||
43 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow x^4(x^3-3)\cdot (1-x)=(-x)^4((-x)^3-3)\cdot (1-(-x)){{/formula}} | ||
44 | {{formula}}\Rightarrow -x^8 + x^7 + 3 x^5 - 3 x^4=-x^8 - x^7 - 3 x^5 - 3 x^4{{/formula}} ↯ | ||
45 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow x^4(x^3-3)\cdot (1-x)=-((-x)^4((-x)^3-3)\cdot (1-(-x))){{/formula}} | ||
46 | {{formula}}\Rightarrow -x^8 + x^7 + 3 x^5 - 3 x^4 = x^8 + x^7 + 3 x^5 + 3 x^4{{/formula}} ↯ | ||
47 | ))) |