Wiki-Quellcode von Lösung Symmetrie untersuchen
Version 1.1 von Holger Engels am 2024/10/25 21:06
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | (% class="noborder" %) | ||
| 2 | |(% colspan="2" %)((( | ||
| 3 | (% style="list-style:alphastyle" %) | ||
| 4 | 1. {{formula}}f(x)=3x+1{{/formula}}))) | ||
| 5 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow 3x+1=3(-x)+1{{/formula}} | ||
| 6 | {{formula}}\Rightarrow 3x+1\neq-3x+1{{/formula}} ↯ | ||
| 7 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow 3x+1=-(3(-x)+1){{/formula}} | ||
| 8 | {{formula}}\Rightarrow 3x+1\neq3x-1{{/formula}} ↯ | ||
| 9 | ))) | ||
| 10 | |(% colspan="2" %)((( | ||
| 11 | (% style="list-style:alphastyle" start="2" %) | ||
| 12 | 1. {{formula}}f(x)=7{{/formula}}))) | ||
| 13 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow 7=7{{/formula}} ✓ | ||
| 14 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow 7=-7{{/formula}} ↯ | ||
| 15 | ))) | ||
| 16 | |(% colspan="2" %)((( | ||
| 17 | (% style="list-style:alphastyle" start="3" %) | ||
| 18 | 1. {{formula}}f(x)=4x^3-8x+2{{/formula}}))) | ||
| 19 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow 3x^3-8x+2=3(-x)^3-8(-x)+2{{/formula}} | ||
| 20 | {{formula}}\Rightarrow 3x^3-8x+2\neq-3x^3+8x+2{{/formula}} ↯ | ||
| 21 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow 3x^3-8x+2=-(3(-x)^3-8(-x)+2){{/formula}} | ||
| 22 | {{formula}}\Rightarrow 3x^3-8x+2\neq3x^3-8x-2{{/formula}} ↯ | ||
| 23 | ))) | ||
| 24 | |(% colspan="2" %)((( | ||
| 25 | (% style="list-style:alphastyle" start="4" %) | ||
| 26 | 1. {{formula}}f(x)=-2x^4-9x^2+3{{/formula}}))) | ||
| 27 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow -2x^4-9x^2+3=-2(-x)^4-9(-x)^2+3{{/formula}} | ||
| 28 | {{formula}}\Rightarrow -2x^4-9x^2+3=-2x^4-9x^2+3{{/formula}} ✓ | ||
| 29 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow -2x^4-9x^2+3=-(-2(-x)^4-9(-x)^2+3){{/formula}} | ||
| 30 | {{formula}}\Rightarrow -2x^4-9x^2+3 \neq 2x^4+9x^2-3{{/formula}} ↯ | ||
| 31 | ))) | ||
| 32 | |(% colspan="2" %)((( | ||
| 33 | (% style="list-style:alphastyle" start="5" %) | ||
| 34 | 1. {{formula}}f(x)=(x^2-2)^3{{/formula}}))) | ||
| 35 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow (x^2-2)^3=((-x)^2-2)^3{{/formula}} | ||
| 36 | {{formula}}\Rightarrow (x^2-2)^3=(x^2-2)^3{{/formula}} ✓ | ||
| 37 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow (x^2-2)^3=-(((-x)^2-2)^3){{/formula}} | ||
| 38 | {{formula}}\Rightarrow (x^2-2)^3\neq-(x^2-2)^3{{/formula}} ↯ | ||
| 39 | ))) | ||
| 40 | |(% colspan="2" %)((( | ||
| 41 | (% style="list-style:alphastyle" start="6" %) | ||
| 42 | 1. {{formula}}f(x)=x^4(x^3-3)\cdot (1-x){{/formula}}))) | ||
| 43 | | (((Check y-Achse: {{formula}}f(x)\overset{?}{=}f(-x)\Rightarrow x^4(x^3-3)\cdot (1-x)=(-x)^4((-x)^3-3)\cdot (1-(-x)){{/formula}} | ||
| 44 | {{formula}}\Rightarrow -x^8 + x^7 + 3 x^5 - 3 x^4=-x^8 - x^7 - 3 x^5 - 3 x^4{{/formula}} ↯ | ||
| 45 | ))) | (((Check Ursprung: {{formula}}f(x)\overset{?}{=}-f(-x)\Rightarrow x^4(x^3-3)\cdot (1-x)=-((-x)^4((-x)^3-3)\cdot (1-(-x))){{/formula}} | ||
| 46 | {{formula}}\Rightarrow -x^8 + x^7 + 3 x^5 - 3 x^4 = x^8 + x^7 + 3 x^5 + 3 x^4{{/formula}} ↯ | ||
| 47 | ))) |