Änderungen von Dokument BPE 3.4 Polynomgleichungen

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:20

Von Version 10.1
bearbeitet von Martina Wagner
am 2023/09/18 16:14
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 8.1
bearbeitet von Martina Wagner
am 2023/09/18 16:00
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -24,10 +24,23 @@
24 24  
25 25  {{/aufgabe}}
26 26  
27 -{{aufgabe afb="I" kompetenzen=" K5" quelle="IQB 2019 Analysis gAN Teil 2 CAS" lizenz="[[CC BY 3.0>>https://creativecommons.org/licenses/by-sa/3.0/deed.de]]"}}
28 -Gegeben ist die in R definierte Funktion {{formula}} f:x x^3+2x^2{{/formula}}.
29 -Bestätigen Sie, dass {{formula}}x_1=-2 {{/formula}} und {{formula}} x_2=0 {{/formula}} die einzigen Nullstellen von f sind.
27 +{{aufgabe afb="I" kompetenzen="K2, K4, K5" quelle="IQB 2019 Analysis gAN Teil 2 CAS" lizenz="[[CC BY 3.0>>https://creativecommons.org/licenses/by-sa/3.0/deed.de]]"}}
28 +Gegeben ist die in R definierte Funktion {{formula}} f:x→x^3+2x^2{{/formula}}.
29 +{{formula}}x ∈
30 + \in\left[ -8;0 \right]{{/formula}} modellhaft durch die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion f mit
30 30  
32 +{{formula}}
33 +f(x)=-\frac{5}{256}x^3-\frac{3}{4}x+2
34 +{{/formula}}
35 +
36 +beschrieben werden. Die Abbildung 1 zeigt den zugehörigen Teil des Graphen von //f//.
37 +Der Startpunkt, von dem aus die Schanze durchfahren wird, wird durch den Punkt
38 +{{formula}}S( -8 | f ( -8 ) ){{/formula}} dargestellt, der Absprungpunkt durch {{formula}}A(0 | f ( 0 ) ){{/formula}}.
39 +
40 +[[Abbildung 1>>image:Schanze.png]]
41 +
42 +Veranschaulichen Sie in Abbildung 1 die mittlere Steigung der Schanze zwischen
43 +Startpunkt und Absprungpunkt. Bestimmen Sie diese Steigung.
31 31  {{/aufgabe}}
32 32  
33 33  {{aufgabe afb="II" kompetenzen="K3, K5" quelle="IQB 2019 Analysis gAN Teil 2 WTR" lizenz="[[CC BY 3.0>>https://creativecommons.org/licenses/by-sa/3.0/deed.de]]"}}