Änderungen von Dokument BPE 3.4 Polynomgleichungen

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:20

Von Version 61.1
bearbeitet von Martin Rathgeb
am 2025/04/06 12:22
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 68.1
bearbeitet von Martin Rathgeb
am 2025/04/06 20:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -110,10 +110,25 @@
110 110  Gib an, wie sich die Gleichung jeweils verändert und welche Idee zur Lösung der Ungleichung führt.
111 111  {{/aufgabe}}
112 112  
113 -{{aufgabe id="Vergleich Verfahren Ungleichungen" afb="II" kompetenzen="K4" quelle="ChatGPT (Fachberatung), überarbeitet durch Fachlehrkraft" lizenz="BY-SA"}}
114 -Erläutere die drei grundlegenden Verfahren zur Lösung von Polynomungleichungen - das \emph{tabellarische}, das \emph{graphische} und das \emph{rechnerische} Verfahren - je einzeln und im Vergleich miteinander:
113 +{{aufgabe id="Verfahren Ungleichungen" afb="II" kompetenzen="K4" quelle="ChatGPT (Fachberatung), überarbeitet durch Martin Rathgeb" lizenz="BY-SA"}}
114 +Erläutere die drei grundlegenden Verfahren zur Lösung von Polynomungleichungen:
115 +(% class="abc" %)
116 +1. das tabellarische Verfahren,
117 +1. das graphische Verfahren,
118 +1. das rechnerische Verfahren.
115 115  {{/aufgabe}}
116 116  
121 +{{aufgabe id="Anwendung drei Verfahren" afb="II" kompetenzen="K4, K5" quelle="ChatGPT (Fachberatung), überarbeitet durch Fachlehrkraft" lizenz="BY-SA"}}
122 +Gegeben ist die Polynomfunktion {{formula}}f{{/formula}} mit {{formula}}f(x) = x^3 - 3x^2 - 4x + 12{{/formula}}.
123 +Untersuche, für welche Werte von {{formula}}x{{/formula}} die Ungleichung {{formula}}f(x) \le 0{{/formula}} gilt.
124 +
125 +Verwende zur Lösung die drei grundlegenden Verfahren zur Bearbeitung von Polynomungleichungen.
126 +(% class="abc" %)
127 +1. Bearbeite die Aufgabe zunächst tabellarisch: Erstelle eine Wertetabelle, berechne geeignete Funktionswerte (z. B. für ganzzahlige //x//-Werte im Bereich von –3 bis +5) und schätze daraus die Lösung der Ungleichung näherungsweise ab.
128 +1. Bearbeite die Aufgabe graphisch: Skizziere den Graphen der Funktion (z. B. mithilfe der Wertetabelle oder des GTR/WTR) und ermittle daraus die Lösungsmenge visuell.
129 +1. Bearbeite die Aufgabe rechnerisch: Bestimme die Nullstellen von //f// und analysiere das Vorzeichenverhalten mithilfe eines Intervallschemas.
130 +{{/aufgabe}}
131 +
117 117  {{aufgabe id="Quadratische Ungleichung" afb="I" kompetenzen="K4" quelle="Stefanie Schmidt" lizenz="BY-SA"}}
118 118  Gegeben ist die Ungleichung {{formula}}3x^2+12x+9\le0{{/formula}}
119 119  (% class="abc" %)