Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 7.1
bearbeitet von Martin Rathgeb
am 2025/04/06 23:25
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 3.1
bearbeitet von Martin Rathgeb
am 2025/04/06 23:18
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,26 +3,23 @@
3 3  
4 4  **Lösungsschritte:**
5 5  (% class="abc" %)
6 -1. //Tabellarisches Verfahren (Teil 1).//
7 -
8 -**Wertetabelle I (ganzzahlige Werte):**
6 +1. (((//Tabellarisches Verfahren.//
7 +1. **Wertetabelle I (ganzzahlige Werte):**
9 9  (% class="border slim" %)
10 10  |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|
11 11  |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|
12 -
13 13  **Interpretation:**
14 14  Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig.
15 -
16 -2. //Tabellarisches Verfahren (Teil 2).//
17 -
18 -**Wertetabelle II (ergänzende Zwischenwerte):**
13 +1. **Wertetabelle II (ergänzende Zwischenwerte):**
19 19  (% class="border slim" %)
20 20  |{{formula}}x{{/formula}} |{{formula}}-1{,}5{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{,}5{{/formula}}|
21 -|{{formula}}f(x){{/formula}} |{{formula}}<0{{/formula}}|{{formula}}>0{{/formula}}|{{formula}}>0{{/formula}}|{{formula}}<0{{/formula}}|
22 -
16 +|{{formula}}f(x){{/formula}} |{{formula}}-0{,}9375{{/formula}}|{{formula}}2{,}4375{{/formula}}|{{formula}}2{,}4375{{/formula}}|{{formula}}-0{,}9375{{/formula}}|
23 23  **Interpretation:**
24 -Nun zeigt sich: In den Intervallen {{formula}}]-1,5;\ -1[{{/formula}} und {{formula}}]1;\ 1,5[{{/formula}} ist {{formula}}f(x) < 0{{/formula}}. Dazwischen sowie außerhalb dieser Bereiche nimmt {{formula}}f(x) positive Werte an. Das deutet auf **vier Nullstellen** und drei Intervallbereiche für das Vorzeichenverhalten hin.
18 +Nun zeigt sich: In den Intervallen {{formula}}(-\sqrt{3},\ -1){{/formula}} und {{formula}}(1,\ \sqrt{3}){{/formula}} ist {{formula}}f(x) < 0{{/formula}}. Dazwischen sowie außerhalb dieser Bereiche nimmt {{formula}}f(x) positive Werte an. Das deutet auf **vier Nullstellen** und drei Intervallbereiche für das Vorzeichenverhalten hin.
25 25  
20 +)))
21 +---
22 +
26 26  3. **Graphische Skizze:**
27 27  
28 28  Die Funktion ist **geraden Grades** (4) mit **positivem Leitkoeffizienten** (1). Daraus folgt: