Änderungen von Dokument BPE 6.3 Graphisches Ableiten
Zuletzt geändert von Holger Engels am 2025/08/02 07:35
Von Version 173.3
bearbeitet von Holger Engels
am 2025/07/29 10:07
am 2025/07/29 10:07
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 95.1
bearbeitet von Holger Engels
am 2025/05/21 05:19
am 2025/05/21 05:19
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (2 geändert, 1 hinzugefügt, 8 gelöscht)
-
Objekte (0 geändert, 0 hinzugefügt, 2 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,5 +1,6 @@ 1 1 {{seiteninhalt/}} 2 2 3 +[[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Werte der Tangentensteigung graphisch bestimmen 3 3 [[Kompetenzen.K4]] [[Kompetenzen.K1]] Ich kann aus Werten der Tangentensteigung einen Graphen zeichnen und diesen als Graphen der Ableitungsfunktion deuten 4 4 [[Kompetenzen.K6]] Ich kann Zusammenhänge zwischen den beiden Funktionsgraphen beschreiben 5 5 [[Kompetenzen.K4]] [[Kompetenzen.K1]] Ich kann erste Hypothesen über einen möglichen algebraischen Zusammenhang zwischen Funktion und Ableitungsfunktion entwickeln ... ... @@ -8,78 +8,52 @@ 8 8 **Interaktiv Erkunden:** [[Graphisches Ableiten>>https://kmap.eu/app/browser/Mathematik/Differentialrechnung/Graphisches%20Ableiten#erkunden]] 9 9 {{/lernende}} 10 10 11 -{{aufgabe id="Tangenten einzeichnen" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 12 -Zeichne jeweils die Tangenten an den Stellen {{formula}}x\in\{-1; 0; 1\}{{/formula}} ein und bestimme deren Steigungen. 12 +* Punktweise graphisch ableiten 13 +* Qualitativ graphisch ableiten 14 +* Zusammenhänge HP, TP, SP vorwärts und rückwärts 15 + 16 +* Funktionsterm der Ableitungsfunktion aus Tangentensteigungen aufstellen 17 +* Beobachtungen bei e^x 18 + 19 +{{aufgabe id="Tangenten einzeichnen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 20 +Zeichne jeweils die Tangenten an den Stellen {{formula}}x\in\{-1, 0, 1\}{{/formula}} ein und bestimme deren Steigungen. 13 13 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] 14 14 {{/aufgabe}} 15 15 16 -{{aufgabe id="Rauf und runter" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 17 -Markiere zuerst alle Stellen an denen die Kurve die Steigung null hat. 18 -Markiere dann auf der x-Achse Intervalle mit positiver Steigung blau und Intervalle mit negativer Steigung rot. 24 +{{aufgabe id="Rauf und runter" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 25 +Markiere jeweils auf der x-Achse Intervalle mit positiver Steigung blau und negativer Steigung rot. Markiere die Stellen mit Steigung Null. 19 19 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] 20 20 {{/aufgabe}} 21 21 22 -{{aufgabe id="Punkte mit gegebener Steigung finden" afb=" I" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="5"}}29 +{{aufgabe id="Punkte mit gegebener Steigung finden" afb="?" kompetenzen="" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="?"}} 23 23 Es ist das Schaubild {{formula}}K_f{{/formula}} einer Funktion {{formula}}f{{/formula}} gegeben. Kennzeichne Punkte auf {{formula}}K_f{{/formula}}, für die gilt: 24 - (%class=abc%)25 - 1.die Steigung der Tangente in diesem Punkt ist 126 - 1.die Steigung der Tangente in diesem Punkt ist-1,527 - 1.die Steigung der Tangente in diesem Punkt ist031 + die Steigung der Tangente in diesem Punkt ist 1 32 + die Steigung der Tangente in diesem Punkt ist 1,5 33 + die Steigung der Tangente in diesem Punkt ist 0 34 + die Steigung der Tangente in diesem Punkt ist {{formula}}-\frac{17}{4}{{/formula}} 28 28 [[image:Tangentensteigung.svg|| width="700px"]] 29 29 {{/aufgabe}} 30 30 31 -{{aufgabe id="Zuordnung" afb="I" kompetenzen="K4, K5" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung"}} 32 -Ordne jedem Funktionsgraph (grün) den Graphen ihrer Steigungsfunktion (blau) zu. Begründe deine Zuordnung. 33 - 38 +{{aufgabe id="Steigungsfunktion zeichnen" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="3" interaktiv=}} 34 34 (% style="float:left; margin-right: 16px" %) 35 -| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 36 -| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 37 -| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 38 -| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 39 -{{/aufgabe}} 40 - 41 -{{aufgabe id="Steigungsfunktion zeichnen" afb="II" kompetenzen="K1, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 42 -(% style="float:left; margin-right: 16px" %) 43 43 Skizziere das Schaubild der Steigungsfunktion. 44 44 [[image:Schaubild.svg||width=500]] 45 45 {{/aufgabe}} 46 46 47 -{{aufgabe id="Beschleunigung" afb="II" kompetenzen="K1, K3, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="6"}} 48 -Ein Auto soll auf freier Autobahn auf {{formula}}180\frac{km}{h}{{/formula}} beschleunigen. Die Geschwindigkeit wird annähernd durch {{formula}}v(t)=180\cdot(1-e^{-0,1t}){{/formula}} beschrieben. {{formula}}v(t){{/formula}} beschreibt hierbei die momentante Geschwindigkeit zum Zeitpunkt {{formula}}t{{/formula}} in Sekunden. Der Verlauf der Geschwindigkeit ist dem Schaubild zu entnehmen. 49 -[[image:Beschleunigung.svg|| width="500px"]] 50 - 51 -(%class=abc%) 52 -1. Zu welchem Zeitpunkt wird die Höchstgeschwindigkeit von {{formula}}180\frac{km}{h}{{/formula}} erreicht? 53 -1. Wann ist die Beschleunigung am höchsten? 54 -1. Skizziere ein Schaubild, aus welchem die Beschleunigung zum Zeitpunkt t hervorgeht. 44 +{{aufgabe id="Zuordnung I" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung I"}} 45 +(% style="float:left; margin-right: 16px" %) 46 +| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 47 +| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 48 +| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 49 +| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 55 55 {{/aufgabe}} 56 56 57 -{{aufgabe id="Algebraischer Zusammenhang I" afb="III" kompetenzen="K1, K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="8" interaktiv=}} 58 -Das blaue Schaubild zeigt eine Funktion, das rote Schaubild zeigt ihre Steigungsfunktion. 52 +{{aufgabe id="Skizzieren anhand Eigenschaften" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="4"}} 59 59 (%class=abc%) 60 -1. Bestimme die Gleichungen der beiden Schaubilder. 61 -1. Welchen Grad besitzen die beiden Funktionen? 62 -1. Stelle eine Hypothese auf, welchen Grad die Steigungsfunktion einer Funktion 4. Grades hat und überlege dir, wie du die Hypothese überprüfen kannst. 63 - 64 -[[image:algebra.png||width=300]] 65 -{{/aufgabe}} 66 - 67 -{{aufgabe id="Algebraischer Zusammenhang II" afb="II" kompetenzen="K1, K2, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 68 -Das blaue Schaubild zeigt eine Funktion, die roten Schaubilder zeigen ihre möglichen Steigungsfunktionen. 69 -[[image:algebra2.png||width=200]] 70 - 71 -[[image:algebra3.png||width=200]] [[image:algebra4.png||width=250]] 72 -(%class=abc%) 73 -1. Ordne dem blauen Schaubild seine Steigungsfunktion begründet zu. 74 -1. Welchen (möglichen) Grad besitzen die drei Funktionen? 75 -{{/aufgabe}} 76 - 77 -{{aufgabe id="Skizzieren anhand Eigenschaften" afb="III" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="10"}} 78 -(%class=abc%) 79 -1. Skizziere eine mögliche Parabel 2. Grades, welche eine waagrechte Tangente an der Stelle {{formula}}x = -2{{/formula}} hat. Welche Gemeinsamkeiten haben alle Parabeln mit dieser Eigenschaft? 80 -1. Skizziere das Schaubild einer möglichen Funktion, welches drei waagrechte Tangenten besitzt. Welchen Grad hat diese Funktion mindestens? 81 -1. Eine Funktion f hat nur positive Steigungen. Skizziere das Schaubild einer möglichen Funktion. 82 -1. Es ist ein achsensymmetrisches Schaubild einer Funktion 4. Grades gesucht. Folgende Angaben sind bekannt, fülle die Lücken und skizziere das Schaubild der Funktion. 54 +1. Skizziere eine mögliche Parabel 2. Grades, welche eine waagrechte Tangente an der Stelle {{formula}}x = -2{{/formula}} hat. Welche Gemeinsamkeiten haben diese Parabeln? 55 +1. Skizziere das Schaubild einer möglichen Funktion, welches drei waagrechte Tangenten besitzt. Welchen minimalen Grad hat die Funktion? 56 +1. Eine Funktion f hat nur positive Steigungen. Skizziere das Schaubild der Ableitungsfunktion. 57 +1. Es ist ein zur y-Achse symmetrisches Schaubild einer Funktion 4. Grades gesucht. Folgende Angaben sind bekannt, fülle die Lücken und skizziere das Schaubild der Funktion. 83 83 (% class="border" %) 84 84 |x|-4|-1|0|1 |4 85 85 |Funktionswert|-2,5| |2 |0| ... ... @@ -86,14 +86,40 @@ 86 86 |Tangentensteigung|-2| |0|-1 | 87 87 {{/aufgabe}} 88 88 89 -{{aufgabe id="Aussagen Schaubild" afb="I" kompetenzen="K1, K4, K5, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5"}} 64 +{{aufgabe id="Aussagen Polynomfunktion" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="3"}} 65 +Prüfe die Aussagen! Welche sind wahr? Eine Polynomfunktion 3. Grades .. 66 +☐ hat immer zwei Extrempunkte! 67 +☐ kann auch mal nur einen Extrempunkt haben! 68 +☐ kann auch mal keinen Extrempunkt haben! 69 +☐ hat immer genau einen Wendepunkt! 70 +☐ hat entweder einen Sattelpunkt oder zwei Extrempunkte! 71 +{{/aufgabe}} 72 + 73 +{{aufgabe id="Aussagen Schaubild" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="?"}} 90 90 Gegeben ist das Schaubild einer Funktion. Nimm Stellung zu folgenden Aussagen und begründe deine Antwort. 91 91 [[image:Aussagen.svg|| width="500px"]] 76 +☐ {{formula}}f(-3)=3{{/formula}} 77 +☐ {{formula}}x = 3{{/formula}} ist dreifache Nullstell 92 92 ☐ die Tangentensteigungen sind negativ für {{formula}}x \in ]2;5[{{/formula}} 93 -☐ die Steigung der Tangente an der Stelle {{formula}}x = 1 {{/formula}} ist kleiner als {{formula}}-2{{/formula}}79 +☐ die Steigung der Tangente an der Stelle {{formula}}x = 1<-2{{/formula}} 94 94 ☐ an der Stelle {{formula}}x = 2{{/formula}} liegt eine waagrechte Tangente 95 -☐ die Funktionswerte sindpositiv für {{formula}}-4 < x < 2{{/formula}}81 +☐ die Tangentensteigungen sind negativ für {{formula}}-4 < x < 2{{/formula}} 96 96 ☐ die Tangentensteigungen haben einen Vorzeichenwechsel bei {{formula}}x=-4{{/formula}} von ⊝ ⇾ ⊕ 97 97 {{/aufgabe}} 98 98 85 +{{aufgabe id="Aussagen Sattelstelle" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="3"}} 86 +Welche Aussagen treffen auf eine Sattelstelle zu? 87 +☐ Eine Sattelstelle hat eine waagrechte Asymptote 88 +☐ An einer Sattelstelle hat die Steigung ein Maximum oder ein Minimum 89 +☐ An einer Sattelstelle gibt es immer auch einen Krümmungswechsel 90 +☐ Eine Sattelstelle ist auch eine Wendestelle 91 +☐ Eine Sattelstelle kann auch eine Maximalstelle sein 92 +{{/aufgabe}} 93 + 94 +{{aufgabe id="Zuordnung II" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="?"}} 95 +Es ist das Schaubild einer Steigungsfunktion gegeben. Zudem sind drei Schaubilder von drei Funktionen (A, B und C) gegeben. Welche Schaubilder (A, B oder C) können nicht zu der Steigungsfunktion gehören? Begründe deine Zuordnung. 96 +[[image:Ableitungsfunktion.svg|| width="300px"]] 97 +[[image:Ableitungsfunktion 1.svg||width="300px"]] [[image:Ableitungsfunktion 2.svg||width=300]] [[image:Ableitungsfunktion 3.svg||width=300]] 98 +{{/aufgabe}} 99 + 99 99 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
- Beschleunigung.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -77.5 KB - Inhalt
- Beschleunigung.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -23.6 KB - Inhalt
-
... ... @@ -1,1 +1,0 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="992" height="496"><defs><clipPath id="ddXltTLxscsI"><path fill="none" stroke="none" d=" M 0 0 L 992 0 L 992 496 L 0 496 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#ddXltTLxscsI)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="993" height="497" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 68.5 0.5 L 68.5 496.5 M 109.5 0.5 L 109.5 496.5 M 150.5 0.5 L 150.5 496.5 M 191.5 0.5 L 191.5 496.5 M 232.5 0.5 L 232.5 496.5 M 273.5 0.5 L 273.5 496.5 M 314.5 0.5 L 314.5 496.5 M 355.5 0.5 L 355.5 496.5 M 396.5 0.5 L 396.5 496.5 M 437.5 0.5 L 437.5 496.5 M 479.5 0.5 L 479.5 496.5 M 520.5 0.5 L 520.5 496.5 M 561.5 0.5 L 561.5 496.5 M 602.5 0.5 L 602.5 496.5 M 643.5 0.5 L 643.5 496.5 M 684.5 0.5 L 684.5 496.5 M 725.5 0.5 L 725.5 496.5 M 766.5 0.5 L 766.5 496.5 M 807.5 0.5 L 807.5 496.5 M 848.5 0.5 L 848.5 496.5 M 890.5 0.5 L 890.5 496.5 M 931.5 0.5 L 931.5 496.5 M 972.5 0.5 L 972.5 496.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 2.5 0.5 L 2.5 496.5 M 10.5 0.5 L 10.5 496.5 M 18.5 0.5 L 18.5 496.5 M 35.5 0.5 L 35.5 496.5 M 43.5 0.5 L 43.5 496.5 M 51.5 0.5 L 51.5 496.5 M 59.5 0.5 L 59.5 496.5 M 76.5 0.5 L 76.5 496.5 M 84.5 0.5 L 84.5 496.5 M 92.5 0.5 L 92.5 496.5 M 101.5 0.5 L 101.5 496.5 M 117.5 0.5 L 117.5 496.5 M 125.5 0.5 L 125.5 496.5 M 133.5 0.5 L 133.5 496.5 M 142.5 0.5 L 142.5 496.5 M 158.5 0.5 L 158.5 496.5 M 166.5 0.5 L 166.5 496.5 M 174.5 0.5 L 174.5 496.5 M 183.5 0.5 L 183.5 496.5 M 199.5 0.5 L 199.5 496.5 M 207.5 0.5 L 207.5 496.5 M 216.5 0.5 L 216.5 496.5 M 224.5 0.5 L 224.5 496.5 M 240.5 0.5 L 240.5 496.5 M 248.5 0.5 L 248.5 496.5 M 257.5 0.5 L 257.5 496.5 M 265.5 0.5 L 265.5 496.5 M 281.5 0.5 L 281.5 496.5 M 290.5 0.5 L 290.5 496.5 M 298.5 0.5 L 298.5 496.5 M 306.5 0.5 L 306.5 496.5 M 322.5 0.5 L 322.5 496.5 M 331.5 0.5 L 331.5 496.5 M 339.5 0.5 L 339.5 496.5 M 347.5 0.5 L 347.5 496.5 M 364.5 0.5 L 364.5 496.5 M 372.5 0.5 L 372.5 496.5 M 380.5 0.5 L 380.5 496.5 M 388.5 0.5 L 388.5 496.5 M 405.5 0.5 L 405.5 496.5 M 413.5 0.5 L 413.5 496.5 M 421.5 0.5 L 421.5 496.5 M 429.5 0.5 L 429.5 496.5 M 446.5 0.5 L 446.5 496.5 M 454.5 0.5 L 454.5 496.5 M 462.5 0.5 L 462.5 496.5 M 470.5 0.5 L 470.5 496.5 M 487.5 0.5 L 487.5 496.5 M 495.5 0.5 L 495.5 496.5 M 503.5 0.5 L 503.5 496.5 M 511.5 0.5 L 511.5 496.5 M 528.5 0.5 L 528.5 496.5 M 536.5 0.5 L 536.5 496.5 M 544.5 0.5 L 544.5 496.5 M 553.5 0.5 L 553.5 496.5 M 569.5 0.5 L 569.5 496.5 M 577.5 0.5 L 577.5 496.5 M 585.5 0.5 L 585.5 496.5 M 594.5 0.5 L 594.5 496.5 M 610.5 0.5 L 610.5 496.5 M 618.5 0.5 L 618.5 496.5 M 627.5 0.5 L 627.5 496.5 M 635.5 0.5 L 635.5 496.5 M 651.5 0.5 L 651.5 496.5 M 659.5 0.5 L 659.5 496.5 M 668.5 0.5 L 668.5 496.5 M 676.5 0.5 L 676.5 496.5 M 692.5 0.5 L 692.5 496.5 M 700.5 0.5 L 700.5 496.5 M 709.5 0.5 L 709.5 496.5 M 717.5 0.5 L 717.5 496.5 M 733.5 0.5 L 733.5 496.5 M 742.5 0.5 L 742.5 496.5 M 750.5 0.5 L 750.5 496.5 M 758.5 0.5 L 758.5 496.5 M 774.5 0.5 L 774.5 496.5 M 783.5 0.5 L 783.5 496.5 M 791.5 0.5 L 791.5 496.5 M 799.5 0.5 L 799.5 496.5 M 816.5 0.5 L 816.5 496.5 M 824.5 0.5 L 824.5 496.5 M 832.5 0.5 L 832.5 496.5 M 840.5 0.5 L 840.5 496.5 M 857.5 0.5 L 857.5 496.5 M 865.5 0.5 L 865.5 496.5 M 873.5 0.5 L 873.5 496.5 M 881.5 0.5 L 881.5 496.5 M 898.5 0.5 L 898.5 496.5 M 906.5 0.5 L 906.5 496.5 M 914.5 0.5 L 914.5 496.5 M 922.5 0.5 L 922.5 496.5 M 939.5 0.5 L 939.5 496.5 M 947.5 0.5 L 947.5 496.5 M 955.5 0.5 L 955.5 496.5 M 963.5 0.5 L 963.5 496.5 M 980.5 0.5 L 980.5 496.5 M 988.5 0.5 L 988.5 496.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 6.5 L 992.5 6.5 M 0.5 6.5 L 992.5 6.5 M 0.5 48.5 L 992.5 48.5 M 0.5 89.5 L 992.5 89.5 M 0.5 130.5 L 992.5 130.5 M 0.5 171.5 L 992.5 171.5 M 0.5 212.5 L 992.5 212.5 M 0.5 253.5 L 992.5 253.5 M 0.5 294.5 L 992.5 294.5 M 0.5 335.5 L 992.5 335.5 M 0.5 376.5 L 992.5 376.5 M 0.5 417.5 L 992.5 417.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 6.5 L 992.5 6.5 M 0.5 15.5 L 992.5 15.5 M 0.5 23.5 L 992.5 23.5 M 0.5 31.5 L 992.5 31.5 M 0.5 39.5 L 992.5 39.5 M 0.5 56.5 L 992.5 56.5 M 0.5 64.5 L 992.5 64.5 M 0.5 72.5 L 992.5 72.5 M 0.5 80.5 L 992.5 80.5 M 0.5 97.5 L 992.5 97.5 M 0.5 105.5 L 992.5 105.5 M 0.5 113.5 L 992.5 113.5 M 0.5 122.5 L 992.5 122.5 M 0.5 138.5 L 992.5 138.5 M 0.5 146.5 L 992.5 146.5 M 0.5 154.5 L 992.5 154.5 M 0.5 163.5 L 992.5 163.5 M 0.5 179.5 L 992.5 179.5 M 0.5 187.5 L 992.5 187.5 M 0.5 196.5 L 992.5 196.5 M 0.5 204.5 L 992.5 204.5 M 0.5 220.5 L 992.5 220.5 M 0.5 228.5 L 992.5 228.5 M 0.5 237.5 L 992.5 237.5 M 0.5 245.5 L 992.5 245.5 M 0.5 261.5 L 992.5 261.5 M 0.5 269.5 L 992.5 269.5 M 0.5 278.5 L 992.5 278.5 M 0.5 286.5 L 992.5 286.5 M 0.5 302.5 L 992.5 302.5 M 0.5 311.5 L 992.5 311.5 M 0.5 319.5 L 992.5 319.5 M 0.5 327.5 L 992.5 327.5 M 0.5 343.5 L 992.5 343.5 M 0.5 352.5 L 992.5 352.5 M 0.5 360.5 L 992.5 360.5 M 0.5 368.5 L 992.5 368.5 M 0.5 385.5 L 992.5 385.5 M 0.5 393.5 L 992.5 393.5 M 0.5 401.5 L 992.5 401.5 M 0.5 409.5 L 992.5 409.5 M 0.5 426.5 L 992.5 426.5 M 0.5 434.5 L 992.5 434.5 M 0.5 442.5 L 992.5 442.5 M 0.5 450.5 L 992.5 450.5 M 0.5 467.5 L 992.5 467.5 M 0.5 475.5 L 992.5 475.5 M 0.5 483.5 L 992.5 483.5 M 0.5 491.5 L 992.5 491.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 27.5 2.5 L 27.5 496.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 27.5 1.5 L 23.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 27.5 1.5 L 31.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="978" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">t</text><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 459.5 L 990.5 459.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 991.5 459.5 L 987.5 455.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 991.5 459.5 L 987.5 463.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="66" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="107" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="148" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="189" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="227" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">10</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="268" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">12</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="309" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">14</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="350" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">16</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="391" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">18</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="432" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">20</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="474" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">22</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="515" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">24</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="556" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">26</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="597" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">28</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="638" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">30</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="679" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">32</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="720" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">34</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="761" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">36</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="802" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">38</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="843" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">40</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="885" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">42</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="926" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">44</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="967" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">46</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="32" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">v(t)</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="422" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">20</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="381" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">40</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="340" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">60</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="299" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">80</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="258" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">100</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="217" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">120</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="176" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">140</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="135" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">160</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="94" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">180</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="53" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">200</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="13" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 27.030681649990175 459.0091396262354 L 27.125 458.8394055556686 M 27.125 458.8394055556686 L 31 451.932935708804 M 31 451.932935708804 L 34.875 445.1554942759258 L 38.75 438.50467071561616 L 42.625 431.97809952080115 L 46.5 425.5734593774071 L 50.375 419.2884723387364 L 54.25 413.12090301526683 L 58.12499999999999 407.06855777958776 L 61.99999999999999 401.12928398619016 M 61.99999999999999 401.12928398619016 L 65.875 395.30096920583156 L 69.75 389.5815404742066 L 73.625 383.9689635546523 L 77.49999999999999 378.46124221462907 L 81.375 373.05641751571756 L 85.25 367.7525671168808 L 89.125 362.54780459074266 L 92.99999999999999 357.44027875263953 L 96.87499999999999 352.4281730022075 L 100.74999999999999 347.5097046772689 L 104.62499999999999 342.68312441979185 L 108.5 337.94671555369246 L 112.37499999999997 333.29879347426333 L 116.25 328.73770504900733 L 120.12499999999999 324.2618280296666 L 123.99999999999999 319.86957047523464 M 123.99999999999999 319.86957047523464 L 127.87499999999999 315.559370185749 L 131.75 311.32969414666144 L 135.625 307.1790379835887 L 139.5 303.10592542724976 L 143.375 299.10890778839905 L 147.25 295.1865634425694 L 151.125 291.3374973244411 L 155 287.56034043165675 L 158.87499999999997 283.85374933790735 L 162.75 280.2164057151129 L 166.62499999999997 276.6470158645318 L 170.49999999999997 273.1443102566292 L 174.375 269.70704307954134 L 178.25 266.3339917959766 L 182.125 263.0239567083937 L 185.99999999999997 259.77576053230393 L 189.875 256.5882479775446 L 193.74999999999997 253.46028533737575 L 197.625 250.3907600852529 L 201.5 247.37858047913357 L 205.37499999999997 244.42267517317583 L 209.25 241.52199283669142 L 213.12499999999997 238.67550178021736 L 216.99999999999997 235.8821895885739 L 220.87499999999997 233.1410627607774 L 224.75 230.4511463566804 L 228.625 227.8114836502136 L 232.49999999999997 225.22113578910577 L 236.375 222.6791814609608 L 240.24999999999997 220.18471656557364 L 244.12499999999997 217.73685389336748 L 248 215.3347228098389 M 248 215.3347228098389 L 251.87499999999997 212.97746894589824 L 255.75 210.66425389399487 L 259.625 208.3942549099198 L 263.5 206.16666462017918 L 267.375 203.98069073483475 L 271.25 201.83555576570876 L 275.125 199.730496749854 L 279 197.66476497819008 L 282.875 195.63762572920837 L 286.75 193.64835800765292 L 290.625 191.69625428808388 L 294.5 189.78062026322965 L 298.375 187.90077459704275 L 302.25 186.05604868236804 L 306.125 184.24578640313763 L 310 182.46934390101006 L 313.875 180.72608934636787 L 317.75 179.01540271359426 L 321.625 177.33667556054735 L 325.5 175.68931081215527 L 329.375 174.0727225480532 L 333.25 172.48633579418885 L 337.125 170.9295863183201 L 341 169.40192042933433 L 344.875 167.90279478031584 L 348.75 166.43167617529355 L 352.625 164.98804137959786 L 356.5 163.5713769337617 L 360.3749999999999 162.18117897089735 L 364.25 160.81695303748552 L 368.125 159.47821391751233 L 371.9999999999999 158.1644854598922 L 375.875 156.87530040911435 L 379.75 155.61020023905343 L 383.6249999999999 154.36873498988496 L 387.4999999999999 153.15046310804757 L 391.375 151.95495128919504 L 395.25 150.7817743240824 L 399.125 149.630514947331 L 403 148.50076368901983 L 406.875 147.3921187290478 L 410.75 146.30418575421885 L 414.625 145.2365778179955 L 418.5 144.1889152028731 L 422.375 143.16082528532542 L 426.2499999999999 142.1519424032732 L 430.125 141.1619077260283 L 434 140.19036912666814 L 437.8749999999999 139.23698105679432 L 441.75 138.3014044236308 L 445.625 137.38330646941853 L 449.4999999999999 136.48236065306293 L 453.375 135.59824653399244 L 457.25 134.7306496581876 L 461.1249999999999 133.87926144633798 L 465 133.04377908408975 L 468.875 132.22390541434368 L 472.75 131.4193488315641 L 476.625 130.62982317806393 L 480.4999999999999 129.8550476422261 L 484.375 129.09474665862717 L 488.25 128.34864981002636 L 492.1249999999999 127.61649173118644 L 496 126.89801201449018 M 496 126.89801201449018 L 499.875 126.19295511732139 L 503.7499999999999 125.50107027117565 L 507.6249999999999 124.82211139246897 L 511.5 124.15583699501303 L 515.375 123.50201010412547 L 519.2499999999999 122.86039817234496 L 523.125 122.23077299672025 L 527 121.6129106376456 L 530.8749999999999 121.0065913392113 L 534.7499999999999 120.41159945104306 L 538.625 119.8277233516016 L 542.5 119.25475537291447 L 546.375 118.6924917267147 L 550.25 118.14073243195924 L 554.125 117.59928124370151 L 558 117.06794558329244 L 561.875 116.54653646988595 L 565.75 116.03486845322391 L 569.6249999999999 115.53275954767673 L 573.5 115.0400311675163 L 577.375 114.5565080633981 L 581.25 114.08201826003028 L 585.125 113.61639299500678 L 589 113.15946665878334 L 592.875 112.71107673577518 L 596.75 112.27106374655455 L 600.625 111.83927119112889 L 604.5 111.41554549327776 L 608.375 110.99973594593064 L 612.25 110.59169465756446 L 616.125 110.1912764996029 L 620 109.79833905479865 L 623.8749999999999 109.41274256657897 L 627.75 109.03434988933896 L 631.625 108.66302643966253 L 635.4999999999999 108.29864014845492 L 639.375 107.94106141396952 L 643.25 107.59016305571231 L 647.125 107.2458202692074 L 651 106.90791058160772 L 654.875 106.57631380813467 L 658.75 106.25091200933218 L 662.625 105.93158944911875 L 666.5 105.6182325536239 L 670.375 105.31072987079239 L 674.25 105.00897203074481 L 678.125 104.71285170687742 L 682 104.42226357768908 L 685.875 104.13710428932154 L 689.7499999999999 103.85727241879954 L 693.625 103.5826684379573 L 697.5 103.31319467803945 L 701.3749999999999 103.04875529496309 L 705.25 102.78925623522849 L 709.125 102.53460520246733 L 712.9999999999999 102.28471162461517 L 716.875 102.0394866216979 L 720.75 101.79884297421955 L 724.6249999999999 101.56269509214059 L 728.5 101.3309589844365 L 732.375 101.10355222922408 L 736.2499999999999 100.88039394444672 L 740.125 100.66140475910674 L 743.9999999999999 100.44650678503541 L 747.8749999999999 100.23562358919071 L 751.75 100.02868016647159 L 755.6249999999999 99.82560291304168 L 759.5 99.62631960014983 L 763.375 99.43075934844063 L 767.2500000000001 99.23885260274494 L 771.125 99.05053110734036 L 775 98.86572788167581 L 778.875 98.68437719654725 L 782.75 98.50641455072036 L 786.625 98.33177664798933 L 790.5 98.16040137466393 L 794.375 97.99222777747758 L 798.2499999999999 97.827196041908 L 802.125 97.66524747090295 L 806 97.50632446400334 L 809.8749999999999 97.35037049685644 L 813.75 97.19733010111173 L 817.625 97.0471488446924 L 821.4999999999999 96.89977331243546 L 825.375 96.75515108709357 L 829.25 96.61323073069144 L 833.1249999999999 96.47396176623124 L 837 96.33729465973897 L 840.875 96.20318080264713 L 844.7499999999999 96.07157249450535 L 848.625 95.94242292601552 L 852.5 95.81568616238235 L 856.3749999999999 95.69131712697617 L 860.25 95.56927158530027 L 864.1250000000001 95.449506129258 L 867.9999999999999 95.33197816171361 L 871.875 95.21664588134189 L 875.7500000000001 95.10346826776049 L 879.6249999999999 94.99240506694042 L 883.5 94.88341677688823 L 887.3750000000001 94.77646463359707 L 891.25 94.67151059725887 L 895.125 94.56851733873486 L 899 94.46744822627869 L 902.875 94.36826731250761 L 906.75 94.27093932161688 L 910.625 94.1754296368332 L 914.5 94.08170428810274 L 918.3749999999999 93.98972994000866 L 922.25 93.89947387991486 L 926.125 93.81090400633082 L 929.9999999999999 93.7239888174945 L 933.875 93.63869740016742 L 937.75 93.55499941864014 L 941.6249999999999 93.47286510394264 L 945.5 93.3922652432563 L 949.375 93.31317116952363 L 953.2499999999999 93.23555475125255 L 957.125 93.15938838251054 L 961 93.08464497310604 L 964.8749999999999 93.01129793895336 L 968.75 92.93932119261734 L 972.6249999999999 92.86868913403492 L 976.4999999999999 92.79937664140982 L 980.375 92.73135906227765 L 984.2500000000001 92.66461220473741 L 988.1249999999999 92.59911232884741 L 992 92.5348361381815" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>
- Schaubild.ggb
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.wies - Größe
-
... ... @@ -1,1 +1,1 @@ 1 - 69.7KB1 +45.0 KB - Inhalt
- Schaubild.svg
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.wies - Größe
-
... ... @@ -1,1 +1,1 @@ 1 -1 1.1KB1 +17.6 KB - Inhalt
-
... ... @@ -1,1 +1,1 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="5 45" height="228"><defs><clipPath id="ICZzpGvxqsZH"><path fill="none" stroke="none" d=" M 0 0 L 5450 L 54528L 0 228L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#ICZzpGvxqsZH)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="546" height="229" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 65.5 0.5 L 65.5 228.5 M 65.5 0.5 L 65.5 228.5 M 135.5 0.5 L 135.5 228.5 M 205.5 0.5 L 205.5 228.5 M 275.5 0.5 L 275.5 228.5 M 346.5 0.5 L 346.5 228.5 M 416.5 0.5 L 416.5 228.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M8.5 0.5 L8.5 228.5 M23.5 0.5 L23.5 228.5 M 37.5 0.5 L 37.5 228.5 M51.5 0.5 L51.5 228.5 M 79.5 0.5 L 79.5 228.5 M 93.5 0.5 L 93.5 228.5 M 107.5 0.5 L 107.5 228.5 M 121.5 0.5 L 121.5 228.5 M 149.5 0.5 L 149.5 228.5 M 163.5 0.5 L 163.5 228.5 M 177.5 0.5 L 177.5 228.5 M 191.5 0.5 L 191.5 228.5 M 219.5 0.5 L 219.5 228.5 M 233.5 0.5 L 233.5 228.5 M 247.5 0.5 L 247.5 228.5 M 261.5 0.5 L 261.5 228.5 M 290.5 0.5 L 290.5 228.5 M 304.5 0.5 L 304.5 228.5 M 318.5 0.5 L 318.5 228.5 M 332.5 0.5 L 332.5 228.5 M 360.5 0.5 L 360.5 228.5 M 374.5 0.5 L 374.5 228.5 M 388.5 0.5 L 388.5 228.5 M 402.5 0.5 L 402.5 228.5 M 430.5 0.5 L 430.5 228.5 M 444.5 0.5 L 444.5 228.5 M 458.5 0.5 L 458.5 228.5 M 472.5 0.5 L 472.5 228.5 M 500.5 0.5 L 500.5 228.5 M 514.5 0.5 L 514.5 228.5 M 528.5 0.5 L 528.5 228.5 M 543.5 0.5 L 543.5 228.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.523.5 L 545.523.5 M 0.523.5 L 545.5 23.5 M 0.594.5 L 545.594.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.59.5 L 545.59.5 M 0.59.5 L 545.59.5 M 0.5 37.5 L 545.5 37.5 M 0.551.5 L 545.5 51.5 M 0.566.5 L 545.566.5 M 0.580.5 L 545.5 80.5 M 0.5 108.5 L 545.5 108.5 M 0.5 122.5 L 545.5 122.5 M 0.5136.5 L 545.5136.5 M 0.5150.5 L 545.5150.5 M 0.5178.5 L 545.5178.5 M 0.5 192.5 L 545.5 192.5 M 0.5206.5 L 545.5206.5 M 0.5220.5 L 545.5 220.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M486.5 2.5 L486.5 228.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M486.5 1.5 L 482.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M486.5 1.5 L490.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5164.5 L 543.5164.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5164.5 L 540.5160.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5164.5 L 540.5168.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="200" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="264" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="341" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="405" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="99" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="28" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)"paint-order="fill stroke markers" d="M23.41796875-9.170485627643473L23.9501953125-3.7457423728209562L24.4824218750000571.5652902151862236L25.01464843756.764008526574855L25.546875000000057 11.851798197845255L26.611328125000057 21.70008069329819L27.67578125 31.121009590865157L28.740234375 40.12528786594427L29.804687548.72345114304754 L30.869140625 56.925869252150406L31.93359375 64.74274777835527 L32.998046875 72.18412960486907 L34.062579.25989644929483L 35.1269531250000685.97977039323716L36.19140625000006 92.35331540522024L37.25585937500006 98.38993885692322L38.3203125 104.09889303272591L 39.384765625109.48927663257018 L40.44921875 114.570036268135L 42.578125123.83771858207503L 44.70703125000006131.97052753614742L46.83593750000006139.03471191168651 L48.96484375 145.09422841061243 L51.09375150.21078792837304 L55.35156250000006157.85092521212604 L57.48046875 160.4871062024185L59.609375 162.4056262106712 L60.673828125163.11182889477817L61.73828125163.6576462173124L62.802734375 164.04916471182403L63.86718750000006164.29235004787418 L64.93164062500006164.39304837343013L 65.99609375000006164.35698765057487 L67.060546875164.18977898453L68.125163.8969179459931L70.25390625162.95565124883277L72.3828125 161.57489126177992L76.64062500000006157.65292213642957 L80.8984375152.43007675937747L 85.15625000000006146.1791312459447 L89.4140625139.14784012883206L93.671875131.56017746346132L 97.9296875123.61755054716527 L102.1875 115.49998625222594L106.4453125 107.36728997276005 L110.70312599.360177185454L 114.960937591.60137762414548 L 119.21875 84.19671206825414L123.4765625000000677.23614174506059L127.73437570.7947903458325 L 131.9921875 64.93393865579955L136.2559.701991797976376L140.507812555.13541909083392L144.7656250000000651.25966651981798 L 149.023437548.09004182271708 L 153.2812545.63257218887746L 157.539062543.88483457226677L 161.796875000000062.83675861838576 L 166.0546875 42.471402205027886 L 170.312542.765699596887316 L 174.5703124999999443.69118221401479 L 178.82812545.214672014121945 L 183.0859375000000647.298947488733404 L 187.3437549.903382273187006L 191.601562552.98455637048269 L 195.85937549683998897869L200.117187560.39294999393637L 204.3750000000000664.6244789729133L 208.6328125 69.14239691500366L 212.89062573.89752550392802L 217.1484375 78.84098502496998L221.4062583.92461388576166L 225.6640625 89.10136075091732L 229.92187594.32564929051456L234.179687599.55371554242437L 238.4375104.74391788848862L 242.6953125 109.85701964454617L 246.953125 114.85644426430676 L 251.21093750000003119.70850315707332L 255.46875000000003124.38259611931211L 259.7265625 128.85138438007112L 263.984375133.09093626024682 L 268.2421875137.0808454456984L 272.5140.80432187421076L 276.7578125144.24825523630545 L 281.015625147.40325108989947L 285.2734375150.26363958881254L 289.53125 152.82745682512214 L 293.7890625155.0963987853672 L 298.046875157.07574792059916 L 302.3046875158.7742723302819L 306.5625160.2040975600392L 310.82031251.3805510132508L 315.078125162.32197897649615 L 319.3359375163.04953625884664 L 323.5937563.58694844500567 L 327.851562596024676229703 L 332.109375164.19747556150128L 336.3671875164.32837241154036L 340.625164.38402080801023 L 344.8828125 164.39647549556167L 349.140625 164.39836040412916 L 353.3984375 164.42243919900793L357.65625 164.5011584447791 L 361.9140625164.666163383083L366.171875.94778632424044L 370.4296875165.37450765272237 L 374.68755.97238944646742L378.9453125 166.76448171004765 L 383.203125167.77020122168238L 387.4609375169.0046829941003 L391.71875170.47810434924952L395.9765625160685563 L 400.234375174.1534393868284L 404.4921875176.34445252551598 L 408.75178.7510606058074 L 413.0078125181.34755510108369 L 417.265625184.0986391330162L 421.5234375186.958559843214L 425.78125 189.87021337871855 L 430.0390625 192.7642224913472 L 434.296875195.5579867508844 L 438.5546875198.15470537212087L 442.8125200.4423726557417L447.0703125202.29274604306138 L451.328125 203.56028678460808L455.5859375204.08107322255526L457.71484375 204.0049078707728 L459.84375 203.67168668700188L461.97265625 203.05524865368614L 464.1015625 202.1280700061004 L466.23046875200.8612270631119L468.359375 199.22435863003312L472.6171875194.7116843688365 L476.875 188.3169517440739 L481.1328125179.74158695435565L483.26171875 174.53558240607458 L485.390625 168.6602594547087L 487.51953125162.07055680702604 L489.6484375154.7195761497925 L491.77734375146.5585398456295 L493.90625 137.53674820096427 L496.03515625 127.60153630606882 L497.099609375 122.27439189877622L498.1640625 116.69823044719304L499.228515625110.86589664013368 L 500.29296874999994104.77010409078775L 501.35742187598.40343393782553L 502.42187591.75833343981903L 503.486328125 84.82711456297335 L 504.5507812577.6019525621758 L 505.61523437570.0748845553568 L 506.679687562.23780809116526L 507.74414062554.08247970995805 L 508.8085937545.600513498102984L 509.8730468749999436.78337963559615L 510.937527.62240293699233L 512.001953125 18.108761385652315L 513.06640625.233484661298377 L 513.5986328125 3.157388968512066L 514.130859375-2.0125473391105686L 514.6630859375 -7.2774879217727175" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="581" height="452"><defs><clipPath id="OSZEIRrgBGiM"><path fill="none" stroke="none" d=" M 0 0 L 581 0 L 581 452 L 0 452 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#OSZEIRrgBGiM)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="582" height="453" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 61.5 0.5 L 61.5 452.5 M 61.5 0.5 L 61.5 452.5 M 135.5 0.5 L 135.5 452.5 M 208.5 0.5 L 208.5 452.5 M 281.5 0.5 L 281.5 452.5 M 354.5 0.5 L 354.5 452.5 M 427.5 0.5 L 427.5 452.5 M 574.5 0.5 L 574.5 452.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 3.5 0.5 L 3.5 452.5 M 17.5 0.5 L 17.5 452.5 M 32.5 0.5 L 32.5 452.5 M 47.5 0.5 L 47.5 452.5 M 76.5 0.5 L 76.5 452.5 M 91.5 0.5 L 91.5 452.5 M 105.5 0.5 L 105.5 452.5 M 120.5 0.5 L 120.5 452.5 M 149.5 0.5 L 149.5 452.5 M 164.5 0.5 L 164.5 452.5 M 179.5 0.5 L 179.5 452.5 M 193.5 0.5 L 193.5 452.5 M 222.5 0.5 L 222.5 452.5 M 237.5 0.5 L 237.5 452.5 M 252.5 0.5 L 252.5 452.5 M 266.5 0.5 L 266.5 452.5 M 296.5 0.5 L 296.5 452.5 M 310.5 0.5 L 310.5 452.5 M 325.5 0.5 L 325.5 452.5 M 340.5 0.5 L 340.5 452.5 M 369.5 0.5 L 369.5 452.5 M 383.5 0.5 L 383.5 452.5 M 398.5 0.5 L 398.5 452.5 M 413.5 0.5 L 413.5 452.5 M 442.5 0.5 L 442.5 452.5 M 457.5 0.5 L 457.5 452.5 M 471.5 0.5 L 471.5 452.5 M 486.5 0.5 L 486.5 452.5 M 515.5 0.5 L 515.5 452.5 M 530.5 0.5 L 530.5 452.5 M 545.5 0.5 L 545.5 452.5 M 559.5 0.5 L 559.5 452.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 61.5 L 581.5 61.5 M 0.5 61.5 L 581.5 61.5 M 0.5 134.5 L 581.5 134.5 M 0.5 207.5 L 581.5 207.5 M 0.5 280.5 L 581.5 280.5 M 0.5 427.5 L 581.5 427.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 2.5 L 581.5 2.5 M 0.5 17.5 L 581.5 17.5 M 0.5 31.5 L 581.5 31.5 M 0.5 46.5 L 581.5 46.5 M 0.5 75.5 L 581.5 75.5 M 0.5 90.5 L 581.5 90.5 M 0.5 104.5 L 581.5 104.5 M 0.5 119.5 L 581.5 119.5 M 0.5 148.5 L 581.5 148.5 M 0.5 163.5 L 581.5 163.5 M 0.5 178.5 L 581.5 178.5 M 0.5 192.5 L 581.5 192.5 M 0.5 222.5 L 581.5 222.5 M 0.5 236.5 L 581.5 236.5 M 0.5 251.5 L 581.5 251.5 M 0.5 265.5 L 581.5 265.5 M 0.5 295.5 L 581.5 295.5 M 0.5 309.5 L 581.5 309.5 M 0.5 324.5 L 581.5 324.5 M 0.5 339.5 L 581.5 339.5 M 0.5 368.5 L 581.5 368.5 M 0.5 383.5 L 581.5 383.5 M 0.5 397.5 L 581.5 397.5 M 0.5 412.5 L 581.5 412.5 M 0.5 441.5 L 581.5 441.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 501.5 2.5 L 501.5 452.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 501.5 1.5 L 497.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 501.5 1.5 L 505.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 353.5 L 579.5 353.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5 353.5 L 576.5 349.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5 353.5 L 576.5 357.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="139" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="139" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 4.5390625 -10.769455542957814 L 5.106445312499943 -1.4480819630760493 L 5.673828125 7.707330593543077 L 6.2412109375 16.69865811751987 L 6.80859375 25.527762873774122 L 7.3759765625 34.196493462211606 L 7.943359374999943 42.706684878286126 L 8.510742187499943 51.06015857344062 L 9.078125 59.25872251541398 L 9.6455078125 67.30417124843257 L 10.212890625 75.19828595327175 L 10.780273437499943 82.94283450719308 L 11.347656249999943 90.53957154376013 L 11.9150390625 97.99023851252085 L 12.482421875 105.2965637385746 L 13.0498046875 112.46026248200815 L 13.6171875 119.4830369972091 L 14.184570312499943 126.36657659205275 L 14.751953124999943 133.1125576869683 L 15.3193359375 139.72264387387156 L 15.88671875 146.19848597498176 L 16.4541015625 152.54172210150836 L 17.021484374999943 158.75397771221313 L 17.588867187499943 164.8368656718515 L 18.15625 170.7919863094813 L 18.7236328125 176.62092747665324 L 19.291015625 182.32526460547388 L 19.8583984375 187.90656076654352 L 20.425781249999943 193.36636672676886 L 20.993164062499943 198.7062210070537 L 21.560546875 203.9276499398584 L 22.1279296875 209.03216772664086 L 22.6953125 214.02127649516888 L 23.830078124999943 223.6592154630882 L 24.96484375 232.8532445619956 L 26.099609375 241.61495197828742 L 27.234375 249.9557381784108 L 28.369140625 257.88681771289833 L 29.503906249999943 265.4192210124004 L 30.638671875 272.56379617572605 L 31.7734375 279.33121074987963 L 32.90820312499994 285.73195350210324 L 34.04296875 291.7763361839211 L 35.177734375 297.4744952871827 L 36.31249999999994 302.83639379211127 L 38.58203125 312.5904038020287 L 40.8515625 321.114665744848 L 43.12109375 328.48281349707133 L 45.39062499999994 334.7658698103819 L 49.9296875 344.3480670989083 L 52.19921875 347.7766815558416 L 54.46874999999994 350.37925701388235 L 56.73828125 352.2145606328206 L 57.87304687499994 352.86222138780556 L 59.0078125 353.33906487738346 L 60.14257812499994 353.6517999719894 L 61.27734375 353.8069984639655 L 62.412109375 353.8110966316525 L 63.54687499999994 353.6703967954844 L 65.81640625 352.97915188436144 L 66.95117187499994 352.4405555536138 L 68.0859375 351.7810617636273 L 72.62499999999994 348.045361012005 L 77.1640625 342.80564459094853 L 81.703125 336.3738351963207 L 86.2421875 329.0329192349157 L 90.78124999999994 321.0384051298641 L 95.3203125 312.6197488660443 L 99.859375 303.98174677550026 L 104.3984375 295.3058955628646 L 108.93749999999994 286.75171957078726 L 113.47656249999994 278.4580652853715 L 118.015625 270.5443630816147 L 122.55468749999994 263.1118562088557 L 127.09375 256.2447970162274 L 131.63281249999994 250.01161041811633 L 136.171875 244.46602459962736 L 140.71093749999994 239.64816896205485 L 145.25 235.58563930835933 L 149.7890625 232.29453026865067 L 154.328125 229.7804349656767 L 158.86718749999994 228.03941192031823 L 163.40625 227.05891919708955 L 167.9453125 226.8187157896454 L 172.484375 227.29173024629353 L 177.02343749999994 228.4448965355134 L 181.5625 230.23995715148084 L 186.1015625 232.6342334595984 L 190.64062499999994 235.5813632820321 L 195.17968749999994 239.03200572325392 L 199.71874999999994 242.9345132355902 L 204.2578125 247.23557092477597 L 208.79687499999994 251.88080309551532 L 213.33593749999994 256.8153470370479 L 217.87499999999994 261.9843940487212 L 222.41406249999994 267.33369770556857 L 226.95312499999994 272.81004936389365 L 231.49218749999994 278.36172090686046 L 236.03124999999994 283.9388747300896 L 240.57031249999994 289.49394096726024 L 245.10937499999997 294.9819619557183 L 249.64843749999997 300.3609039420903 L 254.18749999999997 305.59193602790356 L 258.7265625 310.6396763552119 L 263.265625 315.4724055322278 L 267.8046875 320.06224729895996 L 272.34375 324.3853164328573 L 276.8828125 328.42183389445876 L 281.421875 332.156209213049 L 285.9609375 335.57709011232004 L 290.5 338.6773793760389 L 295.0390625 341.45421895372147 L 299.578125 343.90894130631176 L 304.11718749999994 346.0469879918676 L 308.65625 347.8777954912522 L 313.19531249999994 349.41464827383146 L 317.734375 350.6744991031776 L 322.27343749999994 351.6777565827782 L 326.8125 352.44803994175203 L 331.35156249999994 353.0119010605699 L 335.890625 353.39851373678215 L 340.42968749999994 353.63933019075193 L 344.96875 353.7677048113941 L 349.50781249999994 353.81848514192075 L 354.046875 353.82757010559203 L 358.58593749999994 353.8314354714733 L 363.125 353.86662656019826 L 367.66406249999994 353.9692181897377 L 372.203125 354.1742418611747 L 376.74218749999994 354.51508018448544 L 381.28124999999994 355.02282854432593 L 385.82031249999994 355.7256240058251 L 390.35937499999994 356.6479414603834 L 394.8984375 357.8098570114776 L 399.43749999999994 359.2262786004715 L 403.9765625 360.9061438724327 L 408.51562499999994 362.85158528195495 L 413.0546875 365.05706243898715 L 417.59374999999994 367.50846169466746 L 422.1328125 370.1821629671643 L 426.67187499999994 373.0440738075223 L 431.2109375 376.0486307055151 L 435.74999999999994 379.1377676355037 L 440.28906249999994 382.2398518423006 L 444.82812499999994 385.26858686704037 L 449.36718749999994 388.12188281305583 L 453.90624999999994 390.6806938517602 L 458.44531249999994 392.8078229685355 L 462.98437499999994 394.34669394862635 L 467.52343749999994 395.1200906030406 L 469.79296874999994 395.15839459728323 L 472.06249999999994 394.9288632344548 L 474.33203124999994 394.40295809658926 L 476.60156249999994 393.55060234312685 L 478.87109374999994 392.3401374726615 L 481.1406249999999 390.7382795728136 L 485.67968749999994 386.2188558966948 L 487.94921874999994 383.22619432340196 L 490.21875 379.69185704330323 L 494.75781249999994 370.8279161624607 L 497.02734374999994 365.4083989755744 L 499.296875 359.2672837312192 L 501.56640624999994 352.3546046031638 L 503.83593749999994 344.6183046998097 L 506.10546874999994 336.0041866834404 L 508.37499999999994 326.45586287759477 L 509.50976562499994 321.3131413402391 L 510.64453124999994 315.9147048625672 L 511.779296875 310.2528664225161 L 512.9140624999999 304.3197925590298 L 514.048828125 298.1075017529284 L 515.1835937499999 291.6078627997824 L 516.3183593749999 284.81259317478435 L 517.453125 277.71325738962656 L 518.5878906249999 270.3012653413786 L 519.72265625 262.5678706533657 L 520.857421875 254.5041690080528 L 521.9921874999999 246.1010964719276 L 523.126953125 237.34942781238436 L 524.2617187499999 228.2397748066153 L 525.3964843749999 218.76258454249597 L 526.53125 208.90813771148058 L 527.0986328125 203.83635987853134 L 527.6660156249999 198.6665468934941 L 528.2333984374999 193.39743627873503 L 528.80078125 188.02775483382584 L 529.3681640625 182.55621858125733 L 529.935546875 176.98153271203043 L 530.5029296874999 171.30239153112254 L 531.0703124999999 165.5174784028256 L 531.6376953124999 159.62546569596574 L 532.205078125 153.62501472899146 L 532.7724609375 147.51477571493984 L 533.33984375 141.29338770627768 L 533.9072265624999 134.95947853961778 L 534.4746093749999 128.51166478030711 L 535.0419921875 121.94855166689678 L 535.609375 115.2687330554804 L 536.1767578125 108.47079136391059 L 536.7441406249999 101.55329751589073 L 537.3115234374999 94.51481088493784 L 537.87890625 87.35387923822844 L 538.4462890625 80.06903868031151 L 539.013671875 72.65881359670016 L 539.5810546874999 65.12171659733878 L 540.1484374999999 57.45624845994075 L 540.7158203124999 49.66089807321015 L 541.283203125 41.734142379928585 L 541.8505859375 33.67444631992362 L 542.41796875 25.480262772909043 L 542.9853515624999 17.150032501202418 L 543.5527343749999 8.68218409231281 L 544.1201171875 0.07513390141292575 L 544.6875 -8.672714006323531" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>
- algebra II.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -54.3 KB - Inhalt
- algebra.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -46.7 KB - Inhalt
- algebra.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -981.1 KB - Inhalt
- algebra2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -725.7 KB - Inhalt
- algebra3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -748.2 KB - Inhalt
- algebra4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -723.7 KB - Inhalt
- Ableitungsfunktion.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +47.9 KB - Inhalt
- XWiki.XWikiComments[0]
-
- Autor
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.dirktebbe - Kommentar
-
... ... @@ -1,1 +1,0 @@ 1 -Bei Aufgabe "Aussagen Sattelstelle" haben wir die Frage, ob diese Aufgabe hier an der richtigen Stelle ist. Sattelpunkt, Wendepunkt, Minimum und Maximum sind Begriffe, die erst in TGJ1 eingeführt werden. - Datum
-
... ... @@ -1,1 +1,0 @@ 1 -2025-06-27 12:08:40.853
- XWiki.XWikiComments[1]
-
- Autor
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Kommentar
-
... ... @@ -1,1 +1,0 @@ 1 -Die Aufgaben "Aussagen Polynomfunktion" und "Aussagen Sattelstelle" wurden nach 12.6 verschoben. - Datum
-
... ... @@ -1,1 +1,0 @@ 1 -2025-06-27 12:51:04.585 - Antwort an
-
... ... @@ -1,1 +1,0 @@ 1 -0