Änderungen von Dokument BPE 6.3 Graphisches Ableiten
Zuletzt geändert von Holger Engels am 2025/08/02 07:35
Von Version 98.1
bearbeitet von Stephanie Wietzorek
am 2025/05/21 07:45
am 2025/05/21 07:45
Änderungskommentar:
Neuen Anhang Beschleunigung.ggb hochladen
Auf Version 173.5
bearbeitet von Holger Engels
am 2025/08/02 07:35
am 2025/08/02 07:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (3 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (2 geändert, 7 hinzugefügt, 1 gelöscht)
-
Objekte (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Titel
-
... ... @@ -1,1 +1,1 @@ 1 -BPE 6.3 Momentane Änderungsrate und graphisches Ableiten1 +BPE 6.3 Graphisches Ableiten - Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. wies1 +XWiki.holgerengels - Inhalt
-
... ... @@ -1,6 +1,5 @@ 1 1 {{seiteninhalt/}} 2 2 3 -[[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Werte der Tangentensteigung graphisch bestimmen 4 4 [[Kompetenzen.K4]] [[Kompetenzen.K1]] Ich kann aus Werten der Tangentensteigung einen Graphen zeichnen und diesen als Graphen der Ableitungsfunktion deuten 5 5 [[Kompetenzen.K6]] Ich kann Zusammenhänge zwischen den beiden Funktionsgraphen beschreiben 6 6 [[Kompetenzen.K4]] [[Kompetenzen.K1]] Ich kann erste Hypothesen über einen möglichen algebraischen Zusammenhang zwischen Funktion und Ableitungsfunktion entwickeln ... ... @@ -9,62 +9,78 @@ 9 9 **Interaktiv Erkunden:** [[Graphisches Ableiten>>https://kmap.eu/app/browser/Mathematik/Differentialrechnung/Graphisches%20Ableiten#erkunden]] 10 10 {{/lernende}} 11 11 12 -* Punktweise graphisch ableiten 13 -* Qualitativ graphisch ableiten 14 -* Zusammenhänge HP, TP, SP vorwärts und rückwärts 15 - 16 -* Funktionsterm der Ableitungsfunktion aus Tangentensteigungen aufstellen 17 -* Beobachtungen bei e^x 18 - 19 -{{aufgabe id="Beschleunigung" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="?"}} 20 -Ein Auto soll auf freier Autobahn auf {{formula}}180/frac{km}{h}{{/formula}} beschleunigen. Die Geschwindigkeit wird durch {{formula}}v(t)=180\cdot(1-\exp{-0,1t}){{/formula}} beschrieben. {{formula}}v(t){{/formula}} beschreibt hierbei die momentante Geschwindigkeit zum Zeitpunkt {{formula}}t{{/formula}} in Sekunden. Der Verlauf der Geschwindigkeit ist dem Schaubild zu entnehmen. 21 -[[image:Beschleunigung.svg|| width="500px"]] 22 - 23 -(%class=abc%) 24 -1. Zu welchem Zeitpunkt wird die Höchstgeschwindigkeit von {{formula}}180/frac{km}{h}{{/formula}} erreicht? 25 -1. Wann ist die Beschleunigung am höchsten? 26 -1. Skizziere ein Schaubild, aus welchem die Beschleunigung zum Zeitpunkt t hervorgeht. 27 -{{/aufgabe}} 28 - 29 -{{aufgabe id="Tangenten einzeichnen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 30 -Zeichne jeweils die Tangenten an den Stellen {{formula}}x\in\{-1, 0, 1\}{{/formula}} ein und bestimme deren Steigungen. 11 +{{aufgabe id="Tangenten einzeichnen" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 12 +Zeichne jeweils die Tangenten an den Stellen {{formula}}x\in\{-1; 0; 1\}{{/formula}} ein und bestimme deren Steigungen. 31 31 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] 32 32 {{/aufgabe}} 33 33 34 -{{aufgabe id="Rauf und runter" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 35 -Markiere jeweils auf der x-Achse Intervalle mit positiver Steigung blau und negativer Steigung rot. Markiere die Stellen mit Steigung Null. 16 +{{aufgabe id="Rauf und runter" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 17 +Markiere zuerst alle Stellen an denen die Kurve die Steigung null hat. 18 +Markiere dann auf der x-Achse Intervalle mit positiver Steigung blau und Intervalle mit negativer Steigung rot. 36 36 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] 37 37 {{/aufgabe}} 38 38 39 -{{aufgabe id="Punkte mit gegebener Steigung finden" afb=" ?" kompetenzen="" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="?"}}22 +{{aufgabe id="Punkte mit gegebener Steigung finden" afb="I" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="5"}} 40 40 Es ist das Schaubild {{formula}}K_f{{/formula}} einer Funktion {{formula}}f{{/formula}} gegeben. Kennzeichne Punkte auf {{formula}}K_f{{/formula}}, für die gilt: 41 - die Steigung der Tangente in diesem Punkt ist 142 - ,543 - 044 - {{formula}}-\frac{17}{4}{{/formula}}24 +(%class=abc%) 25 +1. die Steigung der Tangente in diesem Punkt ist 1 26 +1. die Steigung der Tangente in diesem Punkt ist -1,5 27 +1. die Steigung der Tangente in diesem Punkt ist 0 45 45 [[image:Tangentensteigung.svg|| width="700px"]] 46 46 {{/aufgabe}} 47 47 48 -{{aufgabe id="Steigungsfunktion zeichnen" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="3" interaktiv=}} 31 +{{aufgabe id="Zuordnung" afb="I" kompetenzen="K4, K5" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung"}} 32 +Ordne jedem Funktionsgraph (grün) den Graphen ihrer Steigungsfunktion (blau) zu. Begründe deine Zuordnung. 33 + 49 49 (% style="float:left; margin-right: 16px" %) 35 +| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 36 +| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 37 +| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 38 +| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 39 +{{/aufgabe}} 40 + 41 +{{aufgabe id="Steigungsfunktion zeichnen" afb="II" kompetenzen="K1, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 42 +(% style="float:left; margin-right: 16px" %) 50 50 Skizziere das Schaubild der Steigungsfunktion. 51 51 [[image:Schaubild.svg||width=500]] 52 52 {{/aufgabe}} 53 53 54 -{{aufgabe id="Zuordnung I" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung I"}} 55 -(% style="float:left; margin-right: 16px" %) 56 -| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 57 -| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 58 -| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 59 -| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 47 +{{aufgabe id="Beschleunigung" afb="II" kompetenzen="K1, K3, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="6"}} 48 +Ein Auto soll auf freier Autobahn auf {{formula}}180\frac{km}{h}{{/formula}} beschleunigen. Die Geschwindigkeit wird annähernd durch {{formula}}v(t)=180\cdot(1-e^{-0,1t}){{/formula}} beschrieben. {{formula}}v(t){{/formula}} beschreibt hierbei die momentante Geschwindigkeit zum Zeitpunkt {{formula}}t{{/formula}} in Sekunden. Der Verlauf der Geschwindigkeit ist dem Schaubild zu entnehmen. 49 +[[image:Beschleunigung.svg|| width="500px"]] 50 + 51 +(%class=abc%) 52 +1. Zu welchem Zeitpunkt wird die Höchstgeschwindigkeit von {{formula}}180\frac{km}{h}{{/formula}} erreicht? 53 +1. Wann ist die Beschleunigung am höchsten? 54 +1. Skizziere ein Schaubild, aus welchem die Beschleunigung zum Zeitpunkt t hervorgeht. 60 60 {{/aufgabe}} 61 61 62 -{{aufgabe id="Skizzieren anhand Eigenschaften" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="4"}} 57 +{{aufgabe id="Algebraischer Zusammenhang I" afb="III" kompetenzen="K1, K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="8" interaktiv=}} 58 +Das blaue Schaubild zeigt eine Funktion, das rote Schaubild zeigt ihre Steigungsfunktion. 63 63 (%class=abc%) 64 -1. Skizziere eine mögliche Parabel 2. Grades, welche eine waagrechte Tangente an der Stelle {{formula}}x = -2{{/formula}} hat. Welche Gemeinsamkeiten haben diese Parabeln? 65 -1. Skizziere das Schaubild einer möglichen Funktion, welches drei waagrechte Tangenten besitzt. Welchen minimalen Grad hat die Funktion? 66 -1. Eine Funktion f hat nur positive Steigungen. Skizziere das Schaubild der Ableitungsfunktion. 67 -1. Es ist ein zur y-Achse symmetrisches Schaubild einer Funktion 4. Grades gesucht. Folgende Angaben sind bekannt, fülle die Lücken und skizziere das Schaubild der Funktion. 60 +1. Bestimme die Gleichungen der beiden Schaubilder. 61 +1. Welchen Grad besitzen die beiden Funktionen? 62 +1. Stelle eine Hypothese auf, welchen Grad die Steigungsfunktion einer Funktion 4. Grades hat und überlege dir, wie du die Hypothese überprüfen kannst. 63 + 64 +[[image:algebra.png||width=300]] 65 +{{/aufgabe}} 66 + 67 +{{aufgabe id="Algebraischer Zusammenhang II" afb="II" kompetenzen="K1, K2, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 68 +Das blaue Schaubild zeigt eine Funktion, die roten Schaubilder zeigen ihre möglichen Steigungsfunktionen. 69 +[[image:algebra2.png||width=200]] 70 + 71 +[[image:algebra3.png||width=200]] [[image:algebra4.png||width=250]] 72 +(%class=abc%) 73 +1. Ordne dem blauen Schaubild seine Steigungsfunktion begründet zu. 74 +1. Welchen (möglichen) Grad besitzen die drei Funktionen? 75 +{{/aufgabe}} 76 + 77 +{{aufgabe id="Skizzieren anhand Eigenschaften" afb="III" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="10"}} 78 +(%class=abc%) 79 +1. Skizziere eine mögliche Parabel 2. Grades, welche eine waagrechte Tangente an der Stelle {{formula}}x = -2{{/formula}} hat. Welche Gemeinsamkeiten haben alle Parabeln mit dieser Eigenschaft? 80 +1. Skizziere das Schaubild einer möglichen Funktion, welches drei waagrechte Tangenten besitzt. Welchen Grad hat diese Funktion mindestens? 81 +1. Eine Funktion f hat nur positive Steigungen. Skizziere das Schaubild einer möglichen Funktion. 82 +1. Es ist ein achsensymmetrisches Schaubild einer Funktion 4. Grades gesucht. Folgende Angaben sind bekannt, fülle die Lücken und skizziere das Schaubild der Funktion. 68 68 (% class="border" %) 69 69 |x|-4|-1|0|1 |4 70 70 |Funktionswert|-2,5| |2 |0| ... ... @@ -71,36 +71,14 @@ 71 71 |Tangentensteigung|-2| |0|-1 | 72 72 {{/aufgabe}} 73 73 74 -{{aufgabe id="Aussagen Polynomfunktion" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="3"}} 75 -Prüfe die Aussagen! Welche sind wahr? Eine Polynomfunktion 3. Grades .. 76 -☐ hat immer zwei Extrempunkte! 77 -☐ kann auch mal nur einen Extrempunkt haben! 78 -☐ kann auch mal keinen Extrempunkt haben! 79 -☐ hat immer genau einen Wendepunkt! 80 -☐ hat entweder einen Sattelpunkt oder zwei Extrempunkte! 81 -{{/aufgabe}} 82 - 83 -{{aufgabe id="Aussagen Schaubild" afb="?" kompetenzen="" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="?"}} 89 +{{aufgabe id="Aussagen Schaubild" afb="I" kompetenzen="K1, K4, K5, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5"}} 84 84 Gegeben ist das Schaubild einer Funktion. Nimm Stellung zu folgenden Aussagen und begründe deine Antwort. 85 85 [[image:Aussagen.svg|| width="500px"]] 86 -☐ {{formula}}f(-3)=3{{/formula}} 87 -☐ {{formula}}x = 3{{/formula}} ist dreifache Nullstell 88 88 ☐ die Tangentensteigungen sind negativ für {{formula}}x \in ]2;5[{{/formula}} 89 -☐ die Steigung der Tangente an der Stelle {{formula}}x = 1 <-2{{/formula}}93 +☐ die Steigung der Tangente an der Stelle {{formula}}x = 1{{/formula}} ist kleiner als {{formula}}-2{{/formula}} 90 90 ☐ an der Stelle {{formula}}x = 2{{/formula}} liegt eine waagrechte Tangente 91 -☐ die Tangentensteigungensindnegativ für {{formula}}-4 < x < 2{{/formula}}95 +☐ die Funktionswerte sind positiv für {{formula}}-4 < x < 2{{/formula}} 92 92 ☐ die Tangentensteigungen haben einen Vorzeichenwechsel bei {{formula}}x=-4{{/formula}} von ⊝ ⇾ ⊕ 93 93 {{/aufgabe}} 94 94 95 -{{aufgabe id="Aussagen Sattelstelle" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="3"}} 96 -Welche Aussagen treffen auf eine Sattelstelle zu? 97 -☐ Eine Sattelstelle hat eine waagrechte Asymptote 98 -☐ An einer Sattelstelle hat die Steigung ein Maximum oder ein Minimum 99 -☐ An einer Sattelstelle gibt es immer auch einen Krümmungswechsel 100 -☐ Eine Sattelstelle ist auch eine Wendestelle 101 -☐ Eine Sattelstelle kann auch eine Maximalstelle sein 102 -{{/aufgabe}} 103 - 104 - 105 - 106 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 99 +{{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="5" menge="3"/}}
- Ableitungsfunktion.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -47.9 KB - Inhalt
- Schaubild.ggb
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. wies1 +XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,1 @@ 1 - 45.0KB1 +69.7 KB - Inhalt
- Schaubild.svg
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. wies1 +XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,1 @@ 1 -1 7.6KB1 +11.1 KB - Inhalt
-
... ... @@ -1,1 +1,1 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="5 81" height="452"><defs><clipPath id="OSZEIRrgBGiM"><path fill="none" stroke="none" d=" M 0 0 L 5810 L 581452 L 0452 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#OSZEIRrgBGiM)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="582" height="453" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 61.5 0.5 L 61.5452.5 M 61.5 0.5 L 61.5452.5 M 135.5 0.5 L 135.5452.5 M 208.5 0.5 L 208.5452.5 M 281.5 0.5 L 281.5452.5 M 354.5 0.5 L 354.5452.5 M 427.50.5 L 427.5 452.5M574.5 0.5 L574.5452.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M3.5 0.5 L3.5452.5 M17.5 0.5 L17.5452.5 M 32.5 0.5 L 32.5452.5 M47.5 0.5 L47.5452.5 M 76.5 0.5 L 76.5452.5 M 91.5 0.5 L 91.5452.5 M 105.5 0.5 L 105.5452.5 M 120.5 0.5 L 120.5452.5 M 149.5 0.5 L 149.5452.5 M 164.5 0.5 L 164.5452.5 M 179.5 0.5 L 179.5452.5 M 193.5 0.5 L 193.5452.5 M 222.5 0.5 L 222.5452.5 M 237.5 0.5 L 237.5452.5 M 252.5 0.5 L 252.5452.5 M 266.5 0.5 L 266.5452.5 M 296.5 0.5 L 296.5452.5 M 310.5 0.5 L 310.5452.5 M 325.5 0.5 L 325.5452.5 M 340.5 0.5 L 340.5452.5 M 369.5 0.5 L 369.5452.5 M 383.5 0.5 L 383.5452.5 M 398.5 0.5 L 398.5452.5 M 413.5 0.5 L 413.5452.5 M 442.5 0.5 L 442.5452.5 M 457.5 0.5 L 457.5452.5 M 471.5 0.5 L 471.5452.5 M 486.5 0.5 L 486.5452.5 M 515.5 0.5 L 515.5452.5 M 530.5 0.5 L 530.5452.5 M 545.5 0.5 L 545.5452.5 M 559.5 0.5 L 559.5452.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.561.5 L 581.5 61.5 M 0.5 61.5 L 581.5 61.5 M 0.5 134.5L 581.5134.5 M 0.5 207.5 L 581.5207.5M 0.5280.5L 581.5 280.5M 0.5 427.5 L 581.5 427.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.52.5 L 581.52.5M 0.517.5 L 581.5 17.5M 0.531.5 L 581.5 31.5 M 0.546.5L 581.546.5 M 0.5 75.5 L 581.5 75.5 M 0.590.5L 581.590.5 M 0.5 104.5L 581.5 104.5M 0.5119.5L 581.5119.5M 0.5148.5 L 581.5 148.5M 0.5163.5 L 581.5 163.5 M 0.5178.5 L 581.5178.5 M 0.5 192.5 L 581.5 192.5 M 0.5 222.5 L 581.5 222.5 M 0.5236.5 L 581.5236.5 M 0.5251.5 L 581.5251.5M0.5265.5 L 581.5 265.5M 0.5295.5 L 581.5295.5M 0.5 309.5 L 581.5309.5M 0.5324.5 L 581.5 324.5M 0.5339.5 L 581.5 339.5 M 0.5368.5 L 581.5368.5 M 0.5383.5 L 581.5 383.5 M0.5397.5L 581.5 397.5 M 0.5412.5L 581.5412.5 M0.5441.5 L 581.5 441.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M501.5 2.5 L501.5452.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M501.5 1.5 L 497.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M501.5 1.5 L505.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5353.5 L 579.5353.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5353.5 L 576.5349.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5353.5 L 576.5357.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><textfill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><textfill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203"y="369"text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270" y="369"text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270"y="369"text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><textfill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)"stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal"font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal"text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic"fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none"font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)"stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="139" text-anchor="start" dominant-baseline="alphabetic"fill-opacity="1">3</text><textfill="rgb(37,37,37)"stroke="none"font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal"x="487"y="139" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487"y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)"stroke="none"font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)"paint-order="fillstroke markers" d=" M4.5390625-10.769455542957814L 5.106445312499943-1.4480819630760493L 5.6738281257.707330593543077 L 6.2412109375 16.69865811751987 L 6.8085937525.527762873774122L 7.3759765625 34.196493462211606 L7.943359374999943 42.706684878286126L8.510742187499943.06015857344062L9.078125 59.25872251541398L9.6455078125 67.30417124843257 L10.212890625 75.19828595327175L10.780273437499943 82.94283450719308 L 11.34765624999994390.53957154376013L11.915039062597.99023851252085L12.482421875 105.2965637385746L13.0498046875 112.46026248200815L13.6171875 119.4830369972091 L14.184570312499943126.36657659205275 L14.751953124999943133.1125576869683 L15.3193359375 139.72264387387156 L15.88671875146.19848597498176L16.4541015625152.54172210150836L 17.021484374999943 158.75397771221313 L 17.588867187499943 164.8368656718515L18.15625 170.7919863094813 L 18.7236328125176.62092747665324L19.291015625 182.32526460547388L19.8583984375 187.90656076654352 L20.425781249999943193.36636672676886L20.993164062499943198.7062210070537L 21.560546875203.9276499398584L 22.1279296875209.03216772664086L22.6953125214.02127649516888L23.830078124999943 223.6592154630882L 24.96484375 232.8532445619956L26.099609375241.61495197828742L27.234375249.9557381784108 L28.369140625257.88681771289833L29.503906249999943265.4192210124004 L 30.638671875272.56379617572605L 31.7734375279.33121074987963L32.90820312499994 285.73195350210324 L 34.04296875291.7763361839211 L35.177734375297.4744952871827L36.3124999999999402.83639379211127 L38.58203125 312.5904038020287 L40.8515625321.114665744848 L43.12109375 328.48281349707133 L45.39062499999994334.7658698103819L49.9296875 344.3480670989083L52.19921875347.7766815558416 L54.46874999999994 350.37925701388235 L56.73828125352.2145606328206 L 57.87304687499994 352.86222138780556L59.0078125353.33906487738346L60.14257812499994353.6517999719894 L61.27734375353.8069984639655 L 62.412109375 353.8110966316525 L63.54687499999994 353.6703967954844 L65.81640625352.97915188436144 L 66.95117187499994 352.4405555536138 L 68.0859375351.7810617636273L72.624999999999948.045361012005 L77.1640625342.80564459094853 L 81.703125336.3738351963207 L86.2421875329.0329192349157L90.78124999999994321.0384051298641L95.3203125312.6197488660443 L99.859375303.98174677550026L 104.398437595.3058955628646L108.93749999999994 286.75171957078726L 113.47656249999994 278.4580652853715L 118.015625270.5443630816147 L 122.55468749999994263.1118562088557 L 127.09375256.2447970162274L 131.63281249999994250.01161041811633L 136.171875244.46602459962736 L 140.71093749999994239.64816896205485 L 145.25235.58563930835933L 149.7890625232.29453026865067L 154.328125 229.7804349656767 L 158.86718749999994228.03941192031823 L163.40625 227.05891919708955L 167.9453125226.8187157896454L 172.484375227.29173024629353 L 177.02343749999994 228.4448965355134 L 181.5625230.23995715148084L 186.1015625 232.6342334595984L 190.64062499999994 235.5813632820321L 195.17968749999994239.03200572325392L 199.71874999999994 242.9345132355902L 204.2578125247.23557092477597 L 208.79687499999994251.88080309551532L 213.33593749999994256.8153470370479 L 217.87499999999994261.9843940487212L 222.41406249999994267.33369770556857 L 226.95312499999994 272.81004936389365L 231.49218749999994 278.36172090686046 L 236.03124999999994283.9388747300896 L 240.5703124999999489.49394096726024L 245.10937499999997294.9819619557183 L 249.64843749999997 300.3609039420903L254.18749999999997305.59193602790356L 258.7265625310.6396763552119L 263.265625315.4724055322278 L 267.8046875 320.06224729895996 L 272.34375324.3853164328573L 276.8828125328.42183389445876L 281.421875332.156209213049 L 285.9609375335.57709011232004 L 290.5 338.6773793760389 L 295.0390625341.45421895372147L 299.578125343.90894130631176 L 304.11718749999994 346.0469879918676 L 308.65625347.8777954912522L313.19531249999994 349.41464827383146L 317.734375350.6744991031776 L 322.27343749999994 351.6777565827782 L 326.8125352.44803994175203 L 331.35156249999994 353.0119010605699L 335.890625353.39851373678215 L 340.42968749999994 353.63933019075193L 344.96875353.7677048113941 L 349.50781249999994 353.81848514192075L 354.04687553.82757010559203L 358.58593749999994 353.8314354714733L 363.125 353.86662656019826L367.66406249999994 353.9692181897377L 372.203125354.1742418611747L 376.74218749999994 354.51508018448544L 381.28124999999994 355.02282854432593 L 385.82031249999994355.7256240058251 L 390.35937499999994 356.6479414603834L 394.8984375357.8098570114776L 399.43749999999994359.2262786004715L403.9765625360.9061438724327L408.51562499999994362.85158528195495L413.0546875365.05706243898715L417.59374999999994 367.50846169466746L422.1328125370.1821629671643 L426.67187499999994 373.0440738075223L431.2109375376.0486307055151 L435.74999999999994 379.1377676355037L 440.28906249999994 382.2398518423006 L444.82812499999994385.26858686704037L449.36718749999994388.12188281305583 L453.90624999999994390.6806938517602L 458.44531249999994392.8078229685355 L 462.98437499999994394.34669394862635L 467.52343749999994 395.1200906030406L 469.79296874999994 395.15839459728323L 472.06249999999994394.9288632344548L 474.33203124999994394.40295809658926L 476.60156249999994393.55060234312685L 478.87109374999994392.3401374726615L 481.1406249999999 390.7382795728136 L485.67968749999994 386.2188558966948L 487.94921874999994 383.22619432340196 L 490.218759.69185704330323L 494.75781249999994370.8279161624607 L 497.02734374999994 365.4083989755744L 499.296875359.2672837312192L 501.56640624999994 352.3546046031638L503.83593749999994344.6183046998097L506.10546874999994 336.0041866834404L508.37499999999994326.45586287759477L 509.50976562499994321.3131413402391L510.64453124999994 315.9147048625672 L511.779296875310.2528664225161L 512.9140624999999 304.3197925590298 L 514.048828125 298.1075017529284 L 515.1835937499999291.6078627997824L 516.3183593749999284.81259317478435L 517.453125 277.71325738962656 L 518.5878906249999 270.3012653413786L519.72265625 262.5678706533657L520.857421875 254.5041690080528 L521.9921874999999 246.1010964719276L523.126953125 237.34942781238436L524.2617187499999228.2397748066153 L525.3964843749999218.76258454249597 L 526.53125 208.90813771148058L527.0986328125203.83635987853134L527.6660156249999198.6665468934941L528.2333984374999193.39743627873503 L528.80078125 188.02775483382584L 529.3681640625 182.55621858125733L529.93554687576.98153271203043 L530.5029296874999171.30239153112254L531.0703124999999165.5174784028256 L531.6376953124999159.62546569596574 L532.205078125 153.62501472899146 L532.7724609375 147.51477571493984L533.33984375 141.29338770627768L533.9072265624999134.95947853961778 L 534.4746093749999 128.51166478030711L 535.0419921875121.94855166689678 L 535.609375 115.2687330554804L 536.1767578125108.47079136391059 L 536.7441406249999101.55329751589073L 537.311523437499994.51481088493784L 537.8789062587.35387923822844L 538.446289062580.06903868031151L 539.01367187572.65881359670016L 539.5810546874999 65.12171659733878L 540.148437499999957.45624845994075L 540.7158203124999 49.66089807321015L 541.28320312541.734142379928585 L 541.8505859375 33.67444631992362 L 542.4179687525.480262772909043 L 542.9853515624999 17.150032501202418 L543.55273437499998.68218409231281 L 544.12011718750.07513390141292575L 544.6875 -8.672714006323531" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="545" height="228"><defs><clipPath id="ICZzpGvxqsZH"><path fill="none" stroke="none" d=" M 0 0 L 545 0 L 545 228 L 0 228 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#ICZzpGvxqsZH)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="546" height="229" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 65.5 0.5 L 65.5 228.5 M 65.5 0.5 L 65.5 228.5 M 135.5 0.5 L 135.5 228.5 M 205.5 0.5 L 205.5 228.5 M 275.5 0.5 L 275.5 228.5 M 346.5 0.5 L 346.5 228.5 M 416.5 0.5 L 416.5 228.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 8.5 0.5 L 8.5 228.5 M 23.5 0.5 L 23.5 228.5 M 37.5 0.5 L 37.5 228.5 M 51.5 0.5 L 51.5 228.5 M 79.5 0.5 L 79.5 228.5 M 93.5 0.5 L 93.5 228.5 M 107.5 0.5 L 107.5 228.5 M 121.5 0.5 L 121.5 228.5 M 149.5 0.5 L 149.5 228.5 M 163.5 0.5 L 163.5 228.5 M 177.5 0.5 L 177.5 228.5 M 191.5 0.5 L 191.5 228.5 M 219.5 0.5 L 219.5 228.5 M 233.5 0.5 L 233.5 228.5 M 247.5 0.5 L 247.5 228.5 M 261.5 0.5 L 261.5 228.5 M 290.5 0.5 L 290.5 228.5 M 304.5 0.5 L 304.5 228.5 M 318.5 0.5 L 318.5 228.5 M 332.5 0.5 L 332.5 228.5 M 360.5 0.5 L 360.5 228.5 M 374.5 0.5 L 374.5 228.5 M 388.5 0.5 L 388.5 228.5 M 402.5 0.5 L 402.5 228.5 M 430.5 0.5 L 430.5 228.5 M 444.5 0.5 L 444.5 228.5 M 458.5 0.5 L 458.5 228.5 M 472.5 0.5 L 472.5 228.5 M 500.5 0.5 L 500.5 228.5 M 514.5 0.5 L 514.5 228.5 M 528.5 0.5 L 528.5 228.5 M 543.5 0.5 L 543.5 228.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 23.5 L 545.5 23.5 M 0.5 23.5 L 545.5 23.5 M 0.5 94.5 L 545.5 94.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 545.5 9.5 M 0.5 9.5 L 545.5 9.5 M 0.5 37.5 L 545.5 37.5 M 0.5 51.5 L 545.5 51.5 M 0.5 66.5 L 545.5 66.5 M 0.5 80.5 L 545.5 80.5 M 0.5 108.5 L 545.5 108.5 M 0.5 122.5 L 545.5 122.5 M 0.5 136.5 L 545.5 136.5 M 0.5 150.5 L 545.5 150.5 M 0.5 178.5 L 545.5 178.5 M 0.5 192.5 L 545.5 192.5 M 0.5 206.5 L 545.5 206.5 M 0.5 220.5 L 545.5 220.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 486.5 2.5 L 486.5 228.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 486.5 1.5 L 482.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 486.5 1.5 L 490.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 164.5 L 543.5 164.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5 164.5 L 540.5 160.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5 164.5 L 540.5 168.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="200" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="264" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="341" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="405" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="99" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="28" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 23.41796875 -9.170485627643473 L 23.9501953125 -3.7457423728209562 L 24.482421875000057 1.5652902151862236 L 25.0146484375 6.764008526574855 L 25.546875000000057 11.851798197845255 L 26.611328125000057 21.70008069329819 L 27.67578125 31.121009590865157 L 28.740234375 40.12528786594427 L 29.8046875 48.72345114304754 L 30.869140625 56.925869252150406 L 31.93359375 64.74274777835527 L 32.998046875 72.18412960486907 L 34.0625 79.25989644929483 L 35.12695312500006 85.97977039323716 L 36.19140625000006 92.35331540522024 L 37.25585937500006 98.38993885692322 L 38.3203125 104.09889303272591 L 39.384765625 109.48927663257018 L 40.44921875 114.570036268135 L 42.578125 123.83771858207503 L 44.70703125000006 131.97052753614742 L 46.83593750000006 139.03471191168651 L 48.96484375 145.09422841061243 L 51.09375 150.21078792837304 L 55.35156250000006 157.85092521212604 L 57.48046875 160.4871062024185 L 59.609375 162.4056262106712 L 60.673828125 163.11182889477817 L 61.73828125 163.6576462173124 L 62.802734375 164.04916471182403 L 63.86718750000006 164.29235004787418 L 64.93164062500006 164.39304837343013 L 65.99609375000006 164.35698765057487 L 67.060546875 164.18977898453 L 68.125 163.8969179459931 L 70.25390625 162.95565124883277 L 72.3828125 161.57489126177992 L 76.64062500000006 157.65292213642957 L 80.8984375 152.43007675937747 L 85.15625000000006 146.1791312459447 L 89.4140625 139.14784012883206 L 93.671875 131.56017746346132 L 97.9296875 123.61755054716527 L 102.1875 115.49998625222594 L 106.4453125 107.36728997276005 L 110.703125 99.360177185454 L 114.9609375 91.60137762414548 L 119.21875 84.19671206825414 L 123.47656250000006 77.23614174506059 L 127.734375 70.7947903458325 L 131.9921875 64.93393865579955 L 136.25 59.701991797976376 L 140.5078125 55.13541909083392 L 144.76562500000006 51.25966651981798 L 149.0234375 48.09004182271708 L 153.28125 45.63257218887746 L 157.5390625 43.88483457226677 L 161.79687500000006 42.83675861838576 L 166.0546875 42.471402205027886 L 170.3125 42.765699596887316 L 174.57031249999994 43.69118221401479 L 178.828125 45.214672014121945 L 183.08593750000006 47.298947488733404 L 187.34375 49.903382273187006 L 191.6015625 52.98455637048269 L 195.859375 56.49683998897869 L 200.1171875 60.39294999393637 L 204.37500000000006 64.6244789729133 L 208.6328125 69.14239691500366 L 212.890625 73.89752550392802 L 217.1484375 78.84098502496998 L 221.40625 83.92461388576166 L 225.6640625 89.10136075091732 L 229.921875 94.32564929051456 L 234.1796875 99.55371554242437 L 238.4375 104.74391788848862 L 242.6953125 109.85701964454617 L 246.953125 114.85644426430676 L 251.21093750000003 119.70850315707332 L 255.46875000000003 124.38259611931211 L 259.7265625 128.85138438007112 L 263.984375 133.09093626024682 L 268.2421875 137.0808454456984 L 272.5 140.80432187421076 L 276.7578125 144.24825523630545 L 281.015625 147.40325108989947 L 285.2734375 150.26363958881254 L 289.53125 152.82745682512214 L 293.7890625 155.0963987853672 L 298.046875 157.07574792059916 L 302.3046875 158.7742723302819 L 306.5625 160.2040975600392 L 310.8203125 161.3805510132508 L 315.078125 162.32197897649615 L 319.3359375 163.04953625884664 L 323.59375 163.58694844500567 L 327.8515625 163.96024676229703 L 332.109375 164.19747556150128 L 336.3671875 164.32837241154036 L 340.625 164.38402080801023 L 344.8828125 164.39647549556167 L 349.140625 164.39836040412916 L 353.3984375 164.42243919900793 L 357.65625 164.5011584447791 L 361.9140625 164.666163383083 L 366.171875 164.94778632424044 L 370.4296875 165.37450765272237 L 374.6875 165.97238944646742 L 378.9453125 166.76448171004765 L 383.203125 167.77020122168238 L 387.4609375 169.0046829941003 L 391.71875 170.47810434924952 L 395.9765625 172.19498160685563 L 400.234375 174.1534393868284 L 404.4921875 176.34445252551598 L 408.75 178.7510606058074 L 413.0078125 181.34755510108369 L 417.265625 184.0986391330162 L 421.5234375 186.958559843214 L 425.78125 189.87021337871855 L 430.0390625 192.7642224913472 L 434.296875 195.5579867508844 L 438.5546875 198.15470537212087 L 442.8125 200.4423726557417 L 447.0703125 202.29274604306138 L 451.328125 203.56028678460808 L 455.5859375 204.08107322255526 L 457.71484375 204.0049078707728 L 459.84375 203.67168668700188 L 461.97265625 203.05524865368614 L 464.1015625 202.1280700061004 L 466.23046875 200.8612270631119 L 468.359375 199.22435863003312 L 472.6171875 194.7116843688365 L 476.875 188.3169517440739 L 481.1328125 179.74158695435565 L 483.26171875 174.53558240607458 L 485.390625 168.6602594547087 L 487.51953125 162.07055680702604 L 489.6484375 154.7195761497925 L 491.77734375 146.5585398456295 L 493.90625 137.53674820096427 L 496.03515625 127.60153630606882 L 497.099609375 122.27439189877622 L 498.1640625 116.69823044719304 L 499.228515625 110.86589664013368 L 500.29296874999994 104.77010409078775 L 501.357421875 98.40343393782553 L 502.421875 91.75833343981903 L 503.486328125 84.82711456297335 L 504.55078125 77.6019525621758 L 505.615234375 70.0748845553568 L 506.6796875 62.23780809116526 L 507.744140625 54.08247970995805 L 508.80859375 45.600513498102984 L 509.87304687499994 36.78337963559615 L 510.9375 27.62240293699233 L 512.001953125 18.108761385652315 L 513.06640625 8.233484661298377 L 513.5986328125 3.157388968512066 L 514.130859375 -2.0125473391105686 L 514.6630859375 -7.2774879217727175" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>
- Beschleunigung.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +23.6 KB - Inhalt
-
... ... @@ -1,0 +1,1 @@ 1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="992" height="496"><defs><clipPath id="ddXltTLxscsI"><path fill="none" stroke="none" d=" M 0 0 L 992 0 L 992 496 L 0 496 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#ddXltTLxscsI)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="993" height="497" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 68.5 0.5 L 68.5 496.5 M 109.5 0.5 L 109.5 496.5 M 150.5 0.5 L 150.5 496.5 M 191.5 0.5 L 191.5 496.5 M 232.5 0.5 L 232.5 496.5 M 273.5 0.5 L 273.5 496.5 M 314.5 0.5 L 314.5 496.5 M 355.5 0.5 L 355.5 496.5 M 396.5 0.5 L 396.5 496.5 M 437.5 0.5 L 437.5 496.5 M 479.5 0.5 L 479.5 496.5 M 520.5 0.5 L 520.5 496.5 M 561.5 0.5 L 561.5 496.5 M 602.5 0.5 L 602.5 496.5 M 643.5 0.5 L 643.5 496.5 M 684.5 0.5 L 684.5 496.5 M 725.5 0.5 L 725.5 496.5 M 766.5 0.5 L 766.5 496.5 M 807.5 0.5 L 807.5 496.5 M 848.5 0.5 L 848.5 496.5 M 890.5 0.5 L 890.5 496.5 M 931.5 0.5 L 931.5 496.5 M 972.5 0.5 L 972.5 496.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 2.5 0.5 L 2.5 496.5 M 10.5 0.5 L 10.5 496.5 M 18.5 0.5 L 18.5 496.5 M 35.5 0.5 L 35.5 496.5 M 43.5 0.5 L 43.5 496.5 M 51.5 0.5 L 51.5 496.5 M 59.5 0.5 L 59.5 496.5 M 76.5 0.5 L 76.5 496.5 M 84.5 0.5 L 84.5 496.5 M 92.5 0.5 L 92.5 496.5 M 101.5 0.5 L 101.5 496.5 M 117.5 0.5 L 117.5 496.5 M 125.5 0.5 L 125.5 496.5 M 133.5 0.5 L 133.5 496.5 M 142.5 0.5 L 142.5 496.5 M 158.5 0.5 L 158.5 496.5 M 166.5 0.5 L 166.5 496.5 M 174.5 0.5 L 174.5 496.5 M 183.5 0.5 L 183.5 496.5 M 199.5 0.5 L 199.5 496.5 M 207.5 0.5 L 207.5 496.5 M 216.5 0.5 L 216.5 496.5 M 224.5 0.5 L 224.5 496.5 M 240.5 0.5 L 240.5 496.5 M 248.5 0.5 L 248.5 496.5 M 257.5 0.5 L 257.5 496.5 M 265.5 0.5 L 265.5 496.5 M 281.5 0.5 L 281.5 496.5 M 290.5 0.5 L 290.5 496.5 M 298.5 0.5 L 298.5 496.5 M 306.5 0.5 L 306.5 496.5 M 322.5 0.5 L 322.5 496.5 M 331.5 0.5 L 331.5 496.5 M 339.5 0.5 L 339.5 496.5 M 347.5 0.5 L 347.5 496.5 M 364.5 0.5 L 364.5 496.5 M 372.5 0.5 L 372.5 496.5 M 380.5 0.5 L 380.5 496.5 M 388.5 0.5 L 388.5 496.5 M 405.5 0.5 L 405.5 496.5 M 413.5 0.5 L 413.5 496.5 M 421.5 0.5 L 421.5 496.5 M 429.5 0.5 L 429.5 496.5 M 446.5 0.5 L 446.5 496.5 M 454.5 0.5 L 454.5 496.5 M 462.5 0.5 L 462.5 496.5 M 470.5 0.5 L 470.5 496.5 M 487.5 0.5 L 487.5 496.5 M 495.5 0.5 L 495.5 496.5 M 503.5 0.5 L 503.5 496.5 M 511.5 0.5 L 511.5 496.5 M 528.5 0.5 L 528.5 496.5 M 536.5 0.5 L 536.5 496.5 M 544.5 0.5 L 544.5 496.5 M 553.5 0.5 L 553.5 496.5 M 569.5 0.5 L 569.5 496.5 M 577.5 0.5 L 577.5 496.5 M 585.5 0.5 L 585.5 496.5 M 594.5 0.5 L 594.5 496.5 M 610.5 0.5 L 610.5 496.5 M 618.5 0.5 L 618.5 496.5 M 627.5 0.5 L 627.5 496.5 M 635.5 0.5 L 635.5 496.5 M 651.5 0.5 L 651.5 496.5 M 659.5 0.5 L 659.5 496.5 M 668.5 0.5 L 668.5 496.5 M 676.5 0.5 L 676.5 496.5 M 692.5 0.5 L 692.5 496.5 M 700.5 0.5 L 700.5 496.5 M 709.5 0.5 L 709.5 496.5 M 717.5 0.5 L 717.5 496.5 M 733.5 0.5 L 733.5 496.5 M 742.5 0.5 L 742.5 496.5 M 750.5 0.5 L 750.5 496.5 M 758.5 0.5 L 758.5 496.5 M 774.5 0.5 L 774.5 496.5 M 783.5 0.5 L 783.5 496.5 M 791.5 0.5 L 791.5 496.5 M 799.5 0.5 L 799.5 496.5 M 816.5 0.5 L 816.5 496.5 M 824.5 0.5 L 824.5 496.5 M 832.5 0.5 L 832.5 496.5 M 840.5 0.5 L 840.5 496.5 M 857.5 0.5 L 857.5 496.5 M 865.5 0.5 L 865.5 496.5 M 873.5 0.5 L 873.5 496.5 M 881.5 0.5 L 881.5 496.5 M 898.5 0.5 L 898.5 496.5 M 906.5 0.5 L 906.5 496.5 M 914.5 0.5 L 914.5 496.5 M 922.5 0.5 L 922.5 496.5 M 939.5 0.5 L 939.5 496.5 M 947.5 0.5 L 947.5 496.5 M 955.5 0.5 L 955.5 496.5 M 963.5 0.5 L 963.5 496.5 M 980.5 0.5 L 980.5 496.5 M 988.5 0.5 L 988.5 496.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 6.5 L 992.5 6.5 M 0.5 6.5 L 992.5 6.5 M 0.5 48.5 L 992.5 48.5 M 0.5 89.5 L 992.5 89.5 M 0.5 130.5 L 992.5 130.5 M 0.5 171.5 L 992.5 171.5 M 0.5 212.5 L 992.5 212.5 M 0.5 253.5 L 992.5 253.5 M 0.5 294.5 L 992.5 294.5 M 0.5 335.5 L 992.5 335.5 M 0.5 376.5 L 992.5 376.5 M 0.5 417.5 L 992.5 417.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 6.5 L 992.5 6.5 M 0.5 15.5 L 992.5 15.5 M 0.5 23.5 L 992.5 23.5 M 0.5 31.5 L 992.5 31.5 M 0.5 39.5 L 992.5 39.5 M 0.5 56.5 L 992.5 56.5 M 0.5 64.5 L 992.5 64.5 M 0.5 72.5 L 992.5 72.5 M 0.5 80.5 L 992.5 80.5 M 0.5 97.5 L 992.5 97.5 M 0.5 105.5 L 992.5 105.5 M 0.5 113.5 L 992.5 113.5 M 0.5 122.5 L 992.5 122.5 M 0.5 138.5 L 992.5 138.5 M 0.5 146.5 L 992.5 146.5 M 0.5 154.5 L 992.5 154.5 M 0.5 163.5 L 992.5 163.5 M 0.5 179.5 L 992.5 179.5 M 0.5 187.5 L 992.5 187.5 M 0.5 196.5 L 992.5 196.5 M 0.5 204.5 L 992.5 204.5 M 0.5 220.5 L 992.5 220.5 M 0.5 228.5 L 992.5 228.5 M 0.5 237.5 L 992.5 237.5 M 0.5 245.5 L 992.5 245.5 M 0.5 261.5 L 992.5 261.5 M 0.5 269.5 L 992.5 269.5 M 0.5 278.5 L 992.5 278.5 M 0.5 286.5 L 992.5 286.5 M 0.5 302.5 L 992.5 302.5 M 0.5 311.5 L 992.5 311.5 M 0.5 319.5 L 992.5 319.5 M 0.5 327.5 L 992.5 327.5 M 0.5 343.5 L 992.5 343.5 M 0.5 352.5 L 992.5 352.5 M 0.5 360.5 L 992.5 360.5 M 0.5 368.5 L 992.5 368.5 M 0.5 385.5 L 992.5 385.5 M 0.5 393.5 L 992.5 393.5 M 0.5 401.5 L 992.5 401.5 M 0.5 409.5 L 992.5 409.5 M 0.5 426.5 L 992.5 426.5 M 0.5 434.5 L 992.5 434.5 M 0.5 442.5 L 992.5 442.5 M 0.5 450.5 L 992.5 450.5 M 0.5 467.5 L 992.5 467.5 M 0.5 475.5 L 992.5 475.5 M 0.5 483.5 L 992.5 483.5 M 0.5 491.5 L 992.5 491.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 27.5 2.5 L 27.5 496.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 27.5 1.5 L 23.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 27.5 1.5 L 31.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="978" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">t</text><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 459.5 L 990.5 459.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 991.5 459.5 L 987.5 455.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 991.5 459.5 L 987.5 463.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="66" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="107" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="148" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="189" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="227" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">10</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="268" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">12</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="309" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">14</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="350" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">16</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="391" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">18</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="432" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">20</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="474" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">22</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="515" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">24</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="556" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">26</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="597" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">28</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="638" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">30</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="679" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">32</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="720" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">34</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="761" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">36</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="802" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">38</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="843" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">40</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="885" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">42</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="926" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">44</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="967" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">46</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="32" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">v(t)</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="422" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">20</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="381" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">40</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="340" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">60</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="10" y="299" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">80</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="258" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">100</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="217" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">120</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="176" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">140</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="135" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">160</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="94" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">180</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="3" y="53" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">200</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="13" y="475" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 27.030681649990175 459.0091396262354 L 27.125 458.8394055556686 M 27.125 458.8394055556686 L 31 451.932935708804 M 31 451.932935708804 L 34.875 445.1554942759258 L 38.75 438.50467071561616 L 42.625 431.97809952080115 L 46.5 425.5734593774071 L 50.375 419.2884723387364 L 54.25 413.12090301526683 L 58.12499999999999 407.06855777958776 L 61.99999999999999 401.12928398619016 M 61.99999999999999 401.12928398619016 L 65.875 395.30096920583156 L 69.75 389.5815404742066 L 73.625 383.9689635546523 L 77.49999999999999 378.46124221462907 L 81.375 373.05641751571756 L 85.25 367.7525671168808 L 89.125 362.54780459074266 L 92.99999999999999 357.44027875263953 L 96.87499999999999 352.4281730022075 L 100.74999999999999 347.5097046772689 L 104.62499999999999 342.68312441979185 L 108.5 337.94671555369246 L 112.37499999999997 333.29879347426333 L 116.25 328.73770504900733 L 120.12499999999999 324.2618280296666 L 123.99999999999999 319.86957047523464 M 123.99999999999999 319.86957047523464 L 127.87499999999999 315.559370185749 L 131.75 311.32969414666144 L 135.625 307.1790379835887 L 139.5 303.10592542724976 L 143.375 299.10890778839905 L 147.25 295.1865634425694 L 151.125 291.3374973244411 L 155 287.56034043165675 L 158.87499999999997 283.85374933790735 L 162.75 280.2164057151129 L 166.62499999999997 276.6470158645318 L 170.49999999999997 273.1443102566292 L 174.375 269.70704307954134 L 178.25 266.3339917959766 L 182.125 263.0239567083937 L 185.99999999999997 259.77576053230393 L 189.875 256.5882479775446 L 193.74999999999997 253.46028533737575 L 197.625 250.3907600852529 L 201.5 247.37858047913357 L 205.37499999999997 244.42267517317583 L 209.25 241.52199283669142 L 213.12499999999997 238.67550178021736 L 216.99999999999997 235.8821895885739 L 220.87499999999997 233.1410627607774 L 224.75 230.4511463566804 L 228.625 227.8114836502136 L 232.49999999999997 225.22113578910577 L 236.375 222.6791814609608 L 240.24999999999997 220.18471656557364 L 244.12499999999997 217.73685389336748 L 248 215.3347228098389 M 248 215.3347228098389 L 251.87499999999997 212.97746894589824 L 255.75 210.66425389399487 L 259.625 208.3942549099198 L 263.5 206.16666462017918 L 267.375 203.98069073483475 L 271.25 201.83555576570876 L 275.125 199.730496749854 L 279 197.66476497819008 L 282.875 195.63762572920837 L 286.75 193.64835800765292 L 290.625 191.69625428808388 L 294.5 189.78062026322965 L 298.375 187.90077459704275 L 302.25 186.05604868236804 L 306.125 184.24578640313763 L 310 182.46934390101006 L 313.875 180.72608934636787 L 317.75 179.01540271359426 L 321.625 177.33667556054735 L 325.5 175.68931081215527 L 329.375 174.0727225480532 L 333.25 172.48633579418885 L 337.125 170.9295863183201 L 341 169.40192042933433 L 344.875 167.90279478031584 L 348.75 166.43167617529355 L 352.625 164.98804137959786 L 356.5 163.5713769337617 L 360.3749999999999 162.18117897089735 L 364.25 160.81695303748552 L 368.125 159.47821391751233 L 371.9999999999999 158.1644854598922 L 375.875 156.87530040911435 L 379.75 155.61020023905343 L 383.6249999999999 154.36873498988496 L 387.4999999999999 153.15046310804757 L 391.375 151.95495128919504 L 395.25 150.7817743240824 L 399.125 149.630514947331 L 403 148.50076368901983 L 406.875 147.3921187290478 L 410.75 146.30418575421885 L 414.625 145.2365778179955 L 418.5 144.1889152028731 L 422.375 143.16082528532542 L 426.2499999999999 142.1519424032732 L 430.125 141.1619077260283 L 434 140.19036912666814 L 437.8749999999999 139.23698105679432 L 441.75 138.3014044236308 L 445.625 137.38330646941853 L 449.4999999999999 136.48236065306293 L 453.375 135.59824653399244 L 457.25 134.7306496581876 L 461.1249999999999 133.87926144633798 L 465 133.04377908408975 L 468.875 132.22390541434368 L 472.75 131.4193488315641 L 476.625 130.62982317806393 L 480.4999999999999 129.8550476422261 L 484.375 129.09474665862717 L 488.25 128.34864981002636 L 492.1249999999999 127.61649173118644 L 496 126.89801201449018 M 496 126.89801201449018 L 499.875 126.19295511732139 L 503.7499999999999 125.50107027117565 L 507.6249999999999 124.82211139246897 L 511.5 124.15583699501303 L 515.375 123.50201010412547 L 519.2499999999999 122.86039817234496 L 523.125 122.23077299672025 L 527 121.6129106376456 L 530.8749999999999 121.0065913392113 L 534.7499999999999 120.41159945104306 L 538.625 119.8277233516016 L 542.5 119.25475537291447 L 546.375 118.6924917267147 L 550.25 118.14073243195924 L 554.125 117.59928124370151 L 558 117.06794558329244 L 561.875 116.54653646988595 L 565.75 116.03486845322391 L 569.6249999999999 115.53275954767673 L 573.5 115.0400311675163 L 577.375 114.5565080633981 L 581.25 114.08201826003028 L 585.125 113.61639299500678 L 589 113.15946665878334 L 592.875 112.71107673577518 L 596.75 112.27106374655455 L 600.625 111.83927119112889 L 604.5 111.41554549327776 L 608.375 110.99973594593064 L 612.25 110.59169465756446 L 616.125 110.1912764996029 L 620 109.79833905479865 L 623.8749999999999 109.41274256657897 L 627.75 109.03434988933896 L 631.625 108.66302643966253 L 635.4999999999999 108.29864014845492 L 639.375 107.94106141396952 L 643.25 107.59016305571231 L 647.125 107.2458202692074 L 651 106.90791058160772 L 654.875 106.57631380813467 L 658.75 106.25091200933218 L 662.625 105.93158944911875 L 666.5 105.6182325536239 L 670.375 105.31072987079239 L 674.25 105.00897203074481 L 678.125 104.71285170687742 L 682 104.42226357768908 L 685.875 104.13710428932154 L 689.7499999999999 103.85727241879954 L 693.625 103.5826684379573 L 697.5 103.31319467803945 L 701.3749999999999 103.04875529496309 L 705.25 102.78925623522849 L 709.125 102.53460520246733 L 712.9999999999999 102.28471162461517 L 716.875 102.0394866216979 L 720.75 101.79884297421955 L 724.6249999999999 101.56269509214059 L 728.5 101.3309589844365 L 732.375 101.10355222922408 L 736.2499999999999 100.88039394444672 L 740.125 100.66140475910674 L 743.9999999999999 100.44650678503541 L 747.8749999999999 100.23562358919071 L 751.75 100.02868016647159 L 755.6249999999999 99.82560291304168 L 759.5 99.62631960014983 L 763.375 99.43075934844063 L 767.2500000000001 99.23885260274494 L 771.125 99.05053110734036 L 775 98.86572788167581 L 778.875 98.68437719654725 L 782.75 98.50641455072036 L 786.625 98.33177664798933 L 790.5 98.16040137466393 L 794.375 97.99222777747758 L 798.2499999999999 97.827196041908 L 802.125 97.66524747090295 L 806 97.50632446400334 L 809.8749999999999 97.35037049685644 L 813.75 97.19733010111173 L 817.625 97.0471488446924 L 821.4999999999999 96.89977331243546 L 825.375 96.75515108709357 L 829.25 96.61323073069144 L 833.1249999999999 96.47396176623124 L 837 96.33729465973897 L 840.875 96.20318080264713 L 844.7499999999999 96.07157249450535 L 848.625 95.94242292601552 L 852.5 95.81568616238235 L 856.3749999999999 95.69131712697617 L 860.25 95.56927158530027 L 864.1250000000001 95.449506129258 L 867.9999999999999 95.33197816171361 L 871.875 95.21664588134189 L 875.7500000000001 95.10346826776049 L 879.6249999999999 94.99240506694042 L 883.5 94.88341677688823 L 887.3750000000001 94.77646463359707 L 891.25 94.67151059725887 L 895.125 94.56851733873486 L 899 94.46744822627869 L 902.875 94.36826731250761 L 906.75 94.27093932161688 L 910.625 94.1754296368332 L 914.5 94.08170428810274 L 918.3749999999999 93.98972994000866 L 922.25 93.89947387991486 L 926.125 93.81090400633082 L 929.9999999999999 93.7239888174945 L 933.875 93.63869740016742 L 937.75 93.55499941864014 L 941.6249999999999 93.47286510394264 L 945.5 93.3922652432563 L 949.375 93.31317116952363 L 953.2499999999999 93.23555475125255 L 957.125 93.15938838251054 L 961 93.08464497310604 L 964.8749999999999 93.01129793895336 L 968.75 92.93932119261734 L 972.6249999999999 92.86868913403492 L 976.4999999999999 92.79937664140982 L 980.375 92.73135906227765 L 984.2500000000001 92.66461220473741 L 988.1249999999999 92.59911232884741 L 992 92.5348361381815" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>
- algebra II.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +54.3 KB - Inhalt
- algebra.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +46.7 KB - Inhalt
- algebra.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +981.1 KB - Inhalt
- algebra2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +725.7 KB - Inhalt
- algebra3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +748.2 KB - Inhalt
- algebra4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +723.7 KB - Inhalt
- XWiki.XWikiComments[0]
-
- Datum
-
... ... @@ -1,0 +1,1 @@ 1 +2025-06-27 12:08:40.853 - Autor
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.dirktebbe - Kommentar
-
... ... @@ -1,0 +1,1 @@ 1 +Bei Aufgabe "Aussagen Sattelstelle" haben wir die Frage, ob diese Aufgabe hier an der richtigen Stelle ist. Sattelpunkt, Wendepunkt, Minimum und Maximum sind Begriffe, die erst in TGJ1 eingeführt werden.
- XWiki.XWikiComments[1]
-
- Datum
-
... ... @@ -1,0 +1,1 @@ 1 +2025-06-27 12:51:04.585 - Autor
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Antwort an
-
... ... @@ -1,0 +1,1 @@ 1 +0 - Kommentar
-
... ... @@ -1,0 +1,1 @@ 1 +Die Aufgaben "Aussagen Polynomfunktion" und "Aussagen Sattelstelle" wurden nach 12.6 verschoben.