Zuletzt geändert von akukin am 2024/12/22 18:42

Von Version 106.1
bearbeitet von Holger Engels
am 2024/11/17 19:55
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 92.1
bearbeitet von akukin
am 2024/10/17 16:55
Änderungskommentar: Neues Bild DreieckABC.PNG hochladen

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -6,64 +6,108 @@
6 6  [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren
7 7  [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
8 8  
9 -{{aufgabe id="Addition und Subtraktion" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}
10 -Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
11 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch:
12 -(% class="abc" %)
13 -1. {{formula}}\vec{a}+\vec{b}{{/formula}}
14 -1. {{formula}}\vec{a}-\vec{b}{{/formula}}
9 +== Vektoren ==
15 15  
16 -Prüfe dein zeichnerisches Ergebnis durch Rechnung.
11 +{{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}
12 +Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}{{/formula}}
13 +a)
14 +{{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}2\\4 \end{array}\right){{/formula}}
15 +b)
16 +{{formula}}\vec{a}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}}
17 17  {{/aufgabe}}
18 18  
19 -{{aufgabe id="Skalare Multiplikation" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
20 -Zeichne ein zweidimensionales Koordinatensystem. Ermittle jeweils zeichnerisch:
21 -(% class="abc" %)
22 -1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
23 -1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
19 +{{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
20 +Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}}
21 +a)
22 +{{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}}
23 +b)
24 +{{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}}
24 24  {{/aufgabe}}
25 25  
26 -{{aufgabe id="Linearkombination" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
27 -Berechne jeweils den Vektor {{formula}}\vec c{{/formula}}
28 -1. {{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-2\\-2\\20\end{array}\right)=\vec c{{/formula}}
29 -1. {{formula}}\left(\begin{array}{c}1\\2\\3\end{array}\right)-2\left(\begin{array}{c}-2\\2\\0\end{array}\right)+\vec c=\vec o{{/formula}}
27 +{{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="12"}}
28 +Berechne
29 +a)
30 +{{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}}
31 +b)
32 +{{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)={{/formula}}
33 +c)
34 +{{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
35 +d)
36 +{{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
37 +e)
38 +{{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
39 +
40 +f)
41 +{{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}}
42 +g)
43 +{{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}}
44 +h)
45 +{{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}}
46 +i)
47 +{{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
30 30  {{/aufgabe}}
31 31  
32 -{{aufgabe id="Segelregatta" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
33 -Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
50 +{{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
51 +a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
52 +b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
53 +{{/aufgabe}}
34 34  
55 +{{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
56 +a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}}
57 +b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}}
58 +c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}}
59 +d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}}
60 +e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
61 +f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
62 +{{/aufgabe}}
63 +
64 +
65 +{{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
66 +Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
67 +
68 +Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
69 +{{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}
70 +
35 35  [[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
72 +Drücke die Vektoren {{formula}}\overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{s_3}, \overrightarrow{s_4}{{/formula}} und {{formula}}\overrightarrow{s_5}{{/formula}} durch Linearkombinationen folgender Vektoren aus:
73 +
74 +{{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
75 +{{/aufgabe}}
36 36  
37 -(% class="abc" %)
38 -1. (((Das Segelteam //Furious// steuert folgenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
77 +{{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
78 +[[image:Segelregatta Teil 2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
79 +Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
39 39  
40 -{{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}{{/formula}}, {{formula}}\overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
81 +Das Segelteam steuert den untenstehenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
41 41  
83 +{{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}, \qquad \overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}
84 +
85 +{{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}, \qquad \overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
86 +
42 42  mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
43 43  
44 44  Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
45 -)))
46 -1. (((Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.)))
47 -1. ((Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Is er rechtzeitig vor Ort, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt?)))
48 48  {{/aufgabe}}
49 49  
50 -{{aufgabe id="In Summe Null" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
92 +{{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
93 +Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
94 +
95 +Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
96 +{{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}.
97 +
98 +Berechne die Gesamtlänge dieses Segelkurses. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.
99 +
100 +[[image:SegelregattaTeil3.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
101 +{{/aufgabe}}
102 +
103 +{{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
51 51  Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
52 52  Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
53 53  {{/aufgabe}}
54 54  
55 -{{aufgabe id="Teilung einer Strecke" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
56 -{{formula}}C{{/formula}} teilt die Strecke {{formula}}\over{AB}{{/formula}} im Verhältnis 2:1.
57 -1. Stelle {{formula}}\vec{OC}{{/formula}} als Linearkombination der Verbindungsvektoren der Punkte O, A, B dar.
58 -1. Stelle {{formula}}\vec{OC}{{/formula}} als Linearkombination der Ortsvektoren {{formula}}\vec{OA}{{/formula}} und {{formula}}\vec{OB}{{/formula}} dar.
59 -
60 -(es reicht jeweils eine Lösung)
61 -{{/aufgabe}}
62 -
63 -{{aufgabe id="Gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" cc="by" tags="iqb" zeit="10"}}
108 +{{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" cc="by" tags="iqb" zeit="10"}}
64 64  Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
65 65  
66 -(% class="abc" %)
67 67  1. Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
68 68  1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
69 69  {{/aufgabe}}
... ... @@ -72,7 +72,6 @@
72 72  Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
73 73  
74 74  [[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
75 -(% class="abc" %)
76 76  1. Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
77 77  1. Berechne die Länge des Streckenzugs in der Wirklichkeit.
78 78  {{/aufgabe}}
... ... @@ -85,7 +85,6 @@
85 85  
86 86  {{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
87 87  Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
88 -(% class="abc" %)
89 89  1. Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
90 90  1. Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
91 91  {{/aufgabe}}
... ... @@ -92,7 +92,6 @@
92 92  
93 93  {{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
94 94  In einem Koordinatensystem ist ein gerader Zylinder mit dem Radius 5 und der Höhe 10 gegeben, dessen Grundfläche in der {{formula}}x_1x_2{{/formula}}-Ebene liegt. {{formula}} M(8|5|10){{/formula}} ist der Mittelpunkt der Deckfläche.
95 -(% class="abc" %)
96 96  1. Weise nach, dass der Punkt {{formula}}P(5|1|0) {{/formula}} auf dem Rand der Grundfläche des Zylinders liegt.
97 97  1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
98 98  {{/aufgabe}}
... ... @@ -100,8 +100,9 @@
100 100  {{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}}
101 101  Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
102 102  [[image:Sechseckvektoren.png||width="250" style="float:right"]]
103 -
104 -Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
144 +1. Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar. {{formula}}\Vec{x}=\Vec{b}+\Vec{c}+\Vec{d} \qquad \Vec{y}=\Vec{a}+\Vec{c} {{/formula}}
145 +1. Stelle den Vektor {{formula}}\overrightarrow{FB} {{/formula}} mithilfe **drei** der Vektoren {{formula}}\Vec{a}, \Vec{b}, \Vec{c}, \Vec{d}, \Vec{e} {{/formula}} und {{formula}}\Vec{f} {{/formula}} dar.
146 +1. Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
105 105  {{/aufgabe}}
106 106  
107 107  {{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" cc="by" niveau="g" tags="iqb" zeit="10"}}
... ... @@ -110,17 +110,17 @@
110 110  1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
111 111  {{/aufgabe}}
112 112  
113 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}
114 -Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt
115 -{{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}}
116 -wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet.
117 -
118 -Ermittle das Verhältnis des Inhalts der Fläche des Dreiecks {{formula}}ABC{{/formula}} zum Inhalt der Fläche des Trapezes {{formula}}ABCD{{/formula}}.
119 -Stelle dein Vorgehen durch eine geeignete Ergänzung der Abbildung dar.
120 -[[image:DreieckABC.PNG||width="250" style="display:block;margin-left:auto;margin-right:auto"]]
155 +{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
156 +[[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
157 +Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
158 +
159 +1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
160 +1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
161 +Begründe, dass {{formula}}|\overline{MD_k}|=\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
162 +Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
121 121  {{/aufgabe}}
122 122  
123 -{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10" niveau="p"}}
165 +{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10"}}
124 124  [[image:Schwerpunkt.png||width="350" style="float: right"]]
125 125  Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}.
126 126  Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}.
... ... @@ -127,6 +127,17 @@
127 127  
128 128  1. Berechne die Koordinaten des Schwerpunktes {{formula}}S{{/formula}}.
129 129  1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
172 +
130 130  {{/aufgabe}}
131 131  
175 +{{aufgabe id="Flächeninhalte Verhältnis" afb="" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}
176 +Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt
177 +{{formula}}\vec{OD}=\vec{OC}-2\cdot\vec{AB}{{/formula}}
178 +wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet.
179 +
180 +Ermittle das Verhältnis des Inhalts der Fläche des Dreiecks {{formula}}ABC{{/formula}} zum Inhalt der Fläche des Trapezes {{formula}}ABCD{{/formula}}.
181 +Stelle dein Vorgehen durch eine geeignete Ergänzung der Abbildung dar.
182 +
183 +{{/aufgabe}}
184 +
132 132  {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}
gleichschenkligesdreieckabb1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.katharinalautenschlager
Größe
... ... @@ -1,0 +1,1 @@
1 +25.6 KB
Inhalt
XWiki.XWikiComments[3]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Kommentar
... ... @@ -1,1 +1,0 @@
1 -Wir haben diese Untereinheit schon in Seligweiler, jetzt nochmal in Mannheim diskutiert, nachdem uns inzwischen auch Erfahrung aus dem Einsatz im Unterricht vorliegen. Da uns die Seite zu reproduktionslastig erschien und zu viele gleichartige, einfache Aufgaben enthielt, haben wir sie jetzt nochmal überarbeitet.
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-11-15 11:46:39.871
XWiki.XWikiComments[4]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Kommentar
... ... @@ -1,1 +1,0 @@
1 -Die Segelregatta soll noch was mit Geschwindigkeit bekommen und braucht neue Lösungen.
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-11-17 19:45:16.671
XWiki.XWikiComments[1]
Autor
... ... @@ -1,0 +1,1 @@
1 +XWiki.beckstette
Kommentar
... ... @@ -1,0 +1,1 @@
1 +Die Reihenfolge sollte noch entsprechend des Schwierigkeitsgrades geändert werden.
Datum
... ... @@ -1,0 +1,1 @@
1 +2024-02-06 13:58:17.30
XWiki.XWikiComments[2]
Autor
... ... @@ -1,0 +1,1 @@
1 +XWiki.holgerengels
Kommentar
... ... @@ -1,0 +1,1 @@
1 +Ich hab die Reihenfolge nach dem AFB sortiert.
Datum
... ... @@ -1,0 +1,1 @@
1 +2024-10-09 20:57:43.485