Version 13.2 von Daniel Stocker am 2023/11/30 15:28

Verstecke letzte Bearbeiter
Holger Engels 6.1 1 {{seiteninhalt/}}
holger 1.1 2
martina 3.1 3 [[Kompetenzen.K5]] Ich kann elementare Rechenoperationen für Vektoren verwenden
4 [[Kompetenzen.K4]] Ich kann elementare Rechenoperationen für Vektoren geometrisch deuten
5 [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors berechnen
martina 5.1 6 [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren
martina 3.1 7 [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
holger 1.1 8
Daniel Stocker 13.2 9 == Vektoren ==
kickoff kickoff 7.1 10
Daniel Stocker 13.1 11 {{aufgabe id="Vektor" afb="I" kompetenzen="K5" quelle="Daniel Stocker" lizenz="CC BY-SA" zeit="5"}}
Daniel Stocker 10.1 12 Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
kickoff kickoff 7.1 13 Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
14 Bestimmen Sie den Wert von d.
15 {{/aufgabe}}
Daniel Stocker 13.1 16
17 {{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" lizenz="CC BY-SA" zeit="5"}}
18 Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
19 Berechnen Sie die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
20
21
22 {{/aufgabe}}