Wiki-Quellcode von Lösung Ableitungsregeln entdecken und begründen
Verstecke letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| |
1.1 | 1 | (%class=abc%) |
| 2 | 1. (((1. Summenfunktion {{formula}}f(x)=f_1(x)+f_2(x)=m_1x+b_1+m_2x+b_2=(m_1+m_2)x+(b_1+b_2){{/formula}} | ||
| 3 | 1. Vielfachenfunktion {{formula}}f(x)=a\cdot f_1(x)=a\cdot (m_1x+b_1)=(am_1)x+ab_1{{/formula}} | ||
| 4 | 1. (((Produktfunktion | ||
| 5 | |||
| 6 | {{formula}} | ||
| 7 | \begin{align} | ||
| 8 | f(x)&=f_1(x)\cdot f_2(x) \\ | ||
| 9 | &=(m_1x+b_1)\cdot(m_2x+b_2)\\ | ||
| 10 | &=m_1m_2x^2+m_1b_2x+m_2b_1x+b_1b_2\\ | ||
| 11 | &=m_1m_2x^2+(m_1b_2+m_2b_1)x+b_1b_2 | ||
| 12 | \end{align} | ||
| 13 | {{/formula}} | ||
| 14 | |||
| 15 | ))) | ||
| 16 | 1. (((Verkettung | ||
| 17 | |||
| 18 | {{formula}} | ||
| 19 | \begin{align} | ||
| 20 | f(x)&=f_2(x)\circ f_1(x)=f_2(f_1(x))=f_2(m_1x+b_1) \\ | ||
| 21 | &=m_2(m_1x+b_1)+b_2 \\ | ||
| |
3.1 | 22 | &=(m_1m_2)x+(m_2b_1+b_2) |
| |
1.1 | 23 | \end{align} |
| 24 | {{/formula}} | ||
| 25 | |||
| 26 | ))) | ||
| 27 | ))) | ||
| |
2.1 | 28 | 1. (((Die Ableitung an der Stelle {{formula}}x_0{{/formula}} berechnet sich mit Hilfe des Differenzialquotienten durch |
| 29 | {{formula}}f'(x_0)=\lim\limits_{x\rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}{{/formula}} | ||
| 30 | |||
| 31 | 1. (((Summenfunktion: | ||
| 32 | |||
| 33 | {{formula}} | ||
| 34 | \begin{align} | ||
| 35 | f'(x_0)&=\lim\limits_{x\rightarrow x_0} \frac{(m_1+m_2)x+(b_1+b_2)-((m_1+m_2)x_0+(b_1+b_2))}{x-x_0}\\ | ||
| 36 | &=\lim\limits_{x\rightarrow x_0} \frac{(m_1+m_2)x+(b_1+b_2)-(m_1+m_2)x_0-(b_1+b_2)}{x-x_0} \\ | ||
| 37 | &=\lim\limits_{x\rightarrow x_0} \frac{(m_1+m_2)x-(m_1+m_2)x_0}{x-x_0} \\ | ||
| 38 | &=\lim\limits_{x\rightarrow x_0} \frac{(x-x_0)(m_1+m_2)}{x-x_0} \\ | ||
| 39 | &=\lim\limits_{x\rightarrow x_0} \left((m_1+m_2)\frac{x-x_0}{x-x_0}\right) \\ | ||
| 40 | &=m_1+m_2 | ||
| 41 | \end{align} | ||
| 42 | {{/formula}} | ||
| 43 | |||
| 44 | Somit ist {{formula}}f'(x)=m_1+m_2{{/formula}}. | ||
| 45 | ))) | ||
| 46 | 1. (((Vielfachenfunktion: | ||
| 47 | |||
| 48 | {{formula}} | ||
| 49 | \begin{align} | ||
| 50 | f'(x_0)&=\lim\limits_{x\rightarrow x_0} \frac{(am_1)x+ab_1-((am_1)x_0+ab_1)}{x-x_0}\\ | ||
| 51 | &=\lim\limits_{x\rightarrow x_0} \frac{(am_1)x+ab_1-(am_1)x_0-ab_1}{x-x_0}\\ | ||
| 52 | &=\lim\limits_{x\rightarrow x_0} \frac{(am_1)x)-(am_1)x_0}{x-x_0}\\ | ||
| 53 | &=\lim\limits_{x\rightarrow x_0} \frac{am_1(x-x_0)}{x-x_0}\\ | ||
| 54 | &=am_1 | ||
| 55 | \end{align} | ||
| 56 | {{/formula}} | ||
| 57 | |||
| 58 | Somit ist {{formula}}f'(x)=am_1{{/formula}}. | ||
| 59 | ))) | ||
| 60 | 1. (((Produktfunktion: | ||
| 61 | |||
| 62 | {{formula}} | ||
| 63 | \begin{align} | ||
| 64 | f'(x_0)&=\lim\limits_{x\rightarrow x_0} \frac{m_1m_2x^2+(m_1b_2+m_2b_1)x+b_1b_2-(m_1m_2x_0^2+(m_1b_2+m_2b_1)x_0+b_1b_2)}{x-x_0}\\ | ||
| |
3.1 | 65 | &=\lim\limits_{x\rightarrow x_0} \frac{m_1m_2x^2+(m_1b_2+m_2b_1)x+b_1b_2-m_1m_2x_0^2-(m_1b_2+m_2b_1)x_0-b_1b_2}{x-x_0}\\ |
| 66 | &=\lim\limits_{x\rightarrow x_0} \frac{m_1m_2x^2-m_1m_2x_0^2+(m_1b_2+m_2b_1)x-(m_1b_2+m_2b_1)x_0}{x-x_0}\\ | ||
| |
2.1 | 67 | &=\lim\limits_{x\rightarrow x_0} \frac{m_1m_2(x^2-x_0^2)+(m_1b_2+m_2b_1)(x-x_0)}{x-x_0}\\ |
| 68 | &=\lim\limits_{x\rightarrow x_0} \frac{m_1m_2(x-x_0)(x+x_0)+(m_1b_2+m_2b_1)(x-x_0)}{x-x_0}\\ | ||
| |
3.1 | 69 | &=\lim\limits_{x\rightarrow x_0} (m_1m_2(x+x_0)+(m_1b_2+m_2b_1)) \\ |
| |
2.1 | 70 | &=m_1m_2 2x_0+(m_1b_2+m_2b_1)\\ |
| 71 | \end{align} | ||
| 72 | {{/formula}} | ||
| 73 | |||
| |
3.1 | 74 | Somit ist {{formula}}f'(x)=2m_1m_2 x+(m_1b_2+m_2b_1){{/formula}}. |
| |
2.1 | 75 | ))) |
| |
3.1 | 76 | 1. (((Verkettung: |
| 77 | |||
| 78 | {{formula}} | ||
| 79 | \begin{align} | ||
| 80 | f'(x_0)&=\lim\limits_{x\rightarrow x_0} \frac{(m_1m_2)x+(m_2b_1+b_2)-((m_1m_2)x_0+(m_2b_1+b_2))}{x-x_0}\\ | ||
| 81 | &=\lim\limits_{x\rightarrow x_0} \frac{(m_1m_2)x+m_2b_1+b_2-(m_1m_2)x_0-m_2b_1-b_2}{x-x_0}\\ | ||
| 82 | &=\lim\limits_{x\rightarrow x_0} \frac{(m_1m_2)(x-x_0)}{x-x_0}\\ | ||
| 83 | &=m_1m_2 | ||
| 84 | \end{align} | ||
| 85 | {{/formula}} | ||
| 86 | |||
| 87 | Somit ist {{formula}}f'(x)=m_1m_2{{/formula}}. | ||
| |
2.1 | 88 | ))) |
| |
3.1 | 89 | ))) |