Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47

Von Version 42.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:11
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 43.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:13
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,7 +1,7 @@
1 1  [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 2  [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
3 3  
4 -{{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="35"}}
4 +{{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
5 5  Gegeben sind eine reelle Zahl //a// sowie zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
6 6  (% class="abc" %)
7 7  1. (((Ermittle rechnerisch (mittels Definition der Verknüpfung bzw. Verkettung) die Hauptform der folgenden zusammengesetzten Funktionen:
... ... @@ -24,7 +24,7 @@
24 24  //Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}} gilt. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche die Ableitungsregeln erfüllen.
25 25  {{/aufgabe}}
26 26  
27 -{{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}}
27 +{{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}}
28 28  Gegeben ist eine Exponentialfunktion {{formula}}f_q{{/formula}} mit {{formula}}f_q(x)=q^x{{/formula}} für //q>0//. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}f_q'{{/formula}} untersuchen und gehen dabei folgendermaßen vor.
29 29  (% class="abc" %)
30 30  1. Zeige, dass gilt: {{formula}}f_q'(x)=f_q(x)\cdot f_q'(0){{/formula}}.
... ... @@ -60,7 +60,7 @@
60 60  //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel.
61 61  {{/aufgabe}}
62 62  
63 -{{aufgabe id="Winkelfunktionen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
63 +{{aufgabe id="Winkelfunktionen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}}
64 64  Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras).
65 65  (% class="abc" %)
66 66  1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}.