Änderungen von Dokument BPE 12.3 Ableitungsregeln für Verknüpfungen und Verkettungen
Zuletzt geändert von Holger Engels am 2025/10/23 09:42
Von Version 84.1
bearbeitet von Martina Wagner
am 2025/10/14 12:14
am 2025/10/14 12:14
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 95.1
bearbeitet von Holger Engels
am 2025/10/23 09:26
am 2025/10/23 09:26
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinawagner1 +XWiki.holgerengels - Inhalt
-
... ... @@ -6,9 +6,7 @@ 6 6 7 7 a) {{formula}}f(x)= e^{x}+2x +9 {{/formula}}. 8 8 b) {{formula}}f(x)=x \cdot sin(x) {{/formula}}. 9 -c) {{formula}}f(x)= \frac{2x^{3} + 4x}{x} {{/formula}}. 10 -d) {{formula}}f(x)= 5x^{4}- \sqrt{x}{{/formula}}. 11 - 9 +c) {{formula}}f(x)= \frac{1}{x} -3x {{/formula}}. 12 12 {{/aufgabe}} 13 13 14 14 {{aufgabe id="Verkettung" afb="I" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="6"}} ... ... @@ -16,110 +16,41 @@ 16 16 17 17 a) {{formula}}f(x)=(3x+4)^5{{/formula}}. 18 18 b) {{formula}}f(x)=e^{-0,5x+3} {{/formula}}. 19 -c) {{formula}}f(x)=-cos(2x-6) {{/formula}}. 20 -d) {{formula}}f(x)=\frac{1}{(2x-7)^4} {{/formula}}. 21 - 17 +c) {{formula}}f(x)=-0,5cos(2x-6) {{/formula}}. 22 22 {{/aufgabe}} 23 23 24 24 {{aufgabe id="Verknüpfung und Verkettung" afb="II" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="8"}} 25 25 Bestimme die Ableitung der folgenden Funktionen. 26 26 27 -a) {{formula}}f(x)=\sqrt{x} + cos (\pi {x}){{/formula}}. 23 +a) {{formula}}f(x)=\sqrt{8x} + cos (\pi {x}){{/formula}}. 28 28 b) {{formula}}f(x)=e^{-0,5x}\cdot sin(6x-1) {{/formula}}. 29 - 30 30 {{/aufgabe}} 31 31 32 32 {{aufgabe id="Verknüpfung und Verkettung eAN" afb="II" kompetenzen="K5" quelle="Martina Wagner" niveau= "e" cc="BY-SA" zeit="8"}} 33 - 34 34 Bestimme die Ableitung der folgenden Funktionen. 35 35 36 36 a) {{formula}}f(x)=e^{ln(0,75)x}+ln(9x-5) {{/formula}} 37 37 b) {{formula}}f(x)=(3x+1)\cdot e^{-x^4} {{/formula}}. 38 - 39 39 {{/aufgabe}} 40 40 41 -{{aufgabe id="Funktion und Ableitung" afb="II" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="8"}} 34 +{{aufgabe id="Korrekturen" afb="II" kompetenzen="K1, K6" quelle="Martina Wagner" cc="BY-SA" zeit="8"}} 35 +Tim hat zu einem gegebenen Funktionstermen eine Ableitung erstellt. 36 +Begründe, warum die Ableitung nicht korrekt ist. 42 42 43 -Ein Funktionsterm und deren Ableitung wurde nur unvollständig gegeben. Ermittle die fehlenden Eintragungen für die Platzhalter. 44 - 45 -a) {{formula}}f(x)=e^{2x}\cdot(2x+7) {{/formula}} und {{formula}}f´(x)=2e^{2x}\cdot(2x+7) + 4e^{2x} {{/formula}} 46 -b) {{formula}}f(x)=(3x+1)\cdot e^{-x^4} {{/formula}}. 47 - 38 +{{formula}}f(x)=\frac{1}{(6x+9)^{4}} {{/formula}}~ und~ {{formula}}f´(x)=\frac{1}{4(6x+9)^{3}} {{/formula}} 48 48 {{/aufgabe}} 49 49 50 - 51 - 52 -{{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 53 -Gegeben sind eine reelle Zahl //a// sowie zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}. 54 -(% class="abc" %) 55 -1. (((Ermittle rechnerisch (mittels Definition der Verknüpfung bzw. Verkettung) die Hauptform der folgenden zusammengesetzten Funktionen: 56 -1. Summenfunktion {{formula}}f=f_1 + f_2{{/formula}} 57 -1. Vielfachenfunktion {{formula}}f=a \cdot f_1{{/formula}} 58 -1. Produktfunktion {{formula}}f=f_1\cdot f_2{{/formula}}. 59 -1. Verkettung {{formula}}f=f_2\circ f_1{{/formula}}. 60 - 61 -))) 62 -1. Ermittle rechnerisch (mittels Definition des Differenzialquotienten) aus der Hauptform von //f// die Hauptform der ersten Ableitung //f'// von //f//. 63 -1. (((Zeige, dass sich //f'// folgendermaßen schreiben lässt: 64 -1. Summenfunktion {{formula}}f'=f_1' + f_2'{{/formula}} 65 -1. Vielfachenfunktion {{formula}}f'=a \cdot f_1'{{/formula}} 66 -1. Produktfunktion {{formula}}f'=f_1'\cdot f_2+f_1\cdot f_2'{{/formula}} 67 -1. Verkettung {{formula}}f'=(f_2'\circ f_1) \cdot f_1'{{/formula}}. 68 - 69 -))) 70 -1. Recherchiere die Ableitungsregeln (vgl. Merkhilfe, S. 5). 71 -1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a), (b) und (c) die Ableitungsregeln für differenzierbare Funktionen im Wesentlichen gezeigt sind. 72 - 73 -//Anmerkung//, insbesondere zu Teilaufgabe e). Jede differenzierbare Funktion ist //lokal// "linear", genauer: "linear approximierbar" (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// gilt die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}}. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche erwiesenermaßen die Ableitungsregeln erfüllen. 41 +{{aufgabe id="Funktion und Ableitung" afb="III" kompetenzen="K2, K5, K6" quelle="Martina Wagner" cc="BY-SA" zeit="8"}} 42 +Ein Funktionsterm und deren Ableitung wurde nur unvollständig gegeben. Ermittle mögliche Eintragungen für die Kästchen. 43 +Begründe, warum es mehrere Lösungen gibt. 44 +(%class=abc%) 45 +1. {{formula}}f(x)=e^{2x}\cdot\square {{/formula}}~ und~ {{formula}}f´(x)=2e^{2x}\cdot\square + 4e^{2x} {{/formula}} 46 +1. {{formula}}f(x)=\square\cdot \frac{1}{x} {{/formula}}~ und {{formula}}f´(x)= \frac{5}{2\sqrt\square}\cdot\square + \square\cdot\square {{/formula}} 74 74 {{/aufgabe}} 75 75 76 -{{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} 77 -Gegeben ist eine Exponentialfunktion {{formula}}f_q{{/formula}} mit {{formula}}f_q(x)=q^x{{/formula}} für //q>0//. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}f_q'{{/formula}} untersuchen und gehen dabei folgendermaßen vor. 78 -(% class="abc" %) 79 -1. Zeige, dass gilt: {{formula}}f_q'(x)=f_q(x)\cdot f_q'(0){{/formula}}. 80 -1. Untersuche die Abbildung {{formula}}q\mapsto f_q'(0){{/formula}} mit dem WTR. Kennst du für den Funktionsterm eine passende Bezeichnung? 81 -//Ansatz//. Wähle für //q// Potenzen von //e// und approximiere den Differenzialquotienten durch Differenzenquotienten mit kleinen Nennern. 82 -1. Zeige unter Verwendung der Kettenregel und folgender Anmerkung die Ableitungsregel für die Exponentialfunktionen auf S. 5 der Merkhilfe. Dort wird der Funktionsterm {{formula}}e^{bx}{{/formula}} betrachtet, das ist für {{formula}}b=\ln(q){{/formula}} der Funktionsterm von {{formula}}f_q{{/formula}}, nämlich {{formula}}e^{bx}=e^{\ln(q)x}=q^x=f_q(x){{/formula}}. 83 - 84 -//Anmerkung//.(% class="alphastyle" %) 85 -1. Es gilt folgende Gleichung: {{formula}}f_q'(0)=\ln(q){{/formula}}. 86 -Das liefert einen alternativen Zugang zur natürlichen Logarithmusfunktion (als Alternative zu ihrer Erscheinungsweise als Umkehrfunktion der natürlichen Exponentialfunktion). 87 -1. Es gilt die Äquivalenz folgender Gleichungen: {{formula}}\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e{{/formula}}. 88 -Das charakterisiert zunächst eine reelle Zahl, die wir durch "{{formula}}e{{/formula}}" bezeichnen" und das zeichnet weiter die natürliche Exponentialfunktion (zur Basis //e//) unter allen Exponentialfunktionen aus: {{formula}}f_e'(x)=f_e(x){{/formula}} bzw. kurz {{formula}}f_e'=f_e{{/formula}}. 89 -1. Es gelten allgemein folgende Gleichungen für die erste Ableitung: {{formula}}f_q'(x)=\ln(q)\cdot f_q(x){{/formula}} bzw. kurz {{formula}}f_q'=\ln(q)\cdot f_q{{/formula}}. 90 -{{/aufgabe}} 91 - 92 -{{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}} 49 +{{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}} 93 93 Gegeben ist die natürliche Logarithmusfunktion {{formula}}\ln{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}_+^*{{/formula}} und zugehörigem Wertebereich {{formula}}\mathbb{R}{{/formula}}. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}\ln'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. 94 94 //Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=e^{\ln(x)}=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=e^{\ln(x)}\cdot \ln'(x){{/formula}} nach {{formula}}\ln'{{/formula}} auf. 95 95 {{/aufgabe}} 96 96 97 -{{aufgabe id="Potenzregel und Produktregel" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 98 -Gegeben ist eine Funktion //f// mit {{formula}}f(x)=x^k{{/formula}}. 99 -(% class="abc" %) 100 -1. Zeige die Instanz der Potenzregel für {{formula}}k=0,1,2{{/formula}} mittels Definition des Differenzialquotienten. 101 -1. Zeige die Instanz der Potenzregel für {{formula}}k=3,4{{/formula}} mittels Produktregel. 102 -//Ansatz//. {{formula}}f(x)=x^3=x^2\cdot x{{/formula}} bzw. {{formula}}f(x)=x^4=x^3\cdot x{{/formula}}. 103 -1. Zeige die Instanz der Potenzregel für {{formula}}k=5{{/formula}} mittels Produktregel auf mindestens drei Weisen. 104 -//Ansatz//. {{formula}}f(x)=x^5=x^4\cdot x=x^3\cdot x^2= x^{12}\cdot x^{-7}{{/formula}} oder ähnliches. 105 -1. Zeige die Instanz der Potenzregel für {{formula}}k=1/2{{/formula}}. 106 -//Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=f(x)\cdot f(x)=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=2 f(x) f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf. 107 -1. Zeige die Instanz der Potenzregel für {{formula}}k=-n{{/formula}} mit {{formula}}n\in \mathbb{N}^*{{/formula}}. 108 -//Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=x^n\cdot f(x)=1{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}0=h'(x)=(x^n)'\cdot f(x)+x^n\cdot f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf. 109 -1. Zeige die Ableitungsregel für Potenzfunktionen auf S. 5 der Merkhilfe, d.h., die Instanz der Potenzregel für {{formula}}k\in \mathbb{R}_+^*{{/formula}}. 110 -//Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel. 111 - 112 -//Anmerkung//. In der letzten Teilaufgabe leistet die Fortsetzung {{formula}}e^{k\cdot \ln(x)}{{/formula}} der Funktionsgleichung von //f// (geradezu nebenbei) die (längst überfällige) Definition von Potenzen mit positiv reellen Exponenten. 113 -{{/aufgabe}} 114 - 115 -{{aufgabe id="Winkelfunktionen" afb="III" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} 116 -Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras). 117 -(% class="abc" %) 118 -1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}. 119 -1. Begründe bzw. plausibilisiere mittels Teilaufgabe (a) und graphisches Ableiten, dass {{formula}}\sin'=\cos{{/formula}} und {{formula}}\cos'=-\sin{{/formula}} gilt. 120 -1. Zeige, dass aus {{formula}}\sin'=\cos{{/formula}} mittels Kettenregel {{formula}}\cos'=-\sin{{/formula}} folgt. 121 -//Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}\cos(x)=\sin(x-(-\pi/2)){{/formula}} von {{formula}}cos{{/formula}}. 122 -1. Zeige die Ableitungsregeln für Winkelfunktionen auf S. 5 der Merkhilfe. 123 - 124 -//Anmerkung//. Teilaufgabe (c) plausibilisiert die Behauptung in b). 125 -{{/aufgabe}} 54 +{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}