Änderungen von Dokument BPE 12.6 Extrempunkte, Wendepunkte
Zuletzt geändert von Martina Wagner am 2026/02/03 11:22
Von Version 64.1
bearbeitet von Holger Engels
am 2026/01/08 13:52
am 2026/01/08 13:52
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 63.2
bearbeitet von Holger Engels
am 2026/01/07 07:28
am 2026/01/07 07:28
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -77,7 +77,7 @@ 77 77 [[image:Zuordnung.svg||style="float:right;width:450px"]]Die Schaubilder gehören zu den Funktionen {{formula}}f{{/formula}}, {{formula}}f'{{/formula}} und {{formula}}f''{{/formula}}. Ordne zu und begründe Deine Zuordnung. 78 78 {{/aufgabe}} 79 79 80 -{{aufgabe id=" Verknüpfte Funktionen" afb="II" kompetenzen="K1, K5, K6" quelle="Martina Wagner" niveau= "e" zeit="10"}}80 +{{aufgabe id="verknüpfte Funktionen" afb="II" kompetenzen="K1, K5, K6" quelle="Martina Wagner" niveau= "e" zeit="10"}} 81 81 Gegeben sind die beiden Funktionen g und h. 82 82 (%class="border" style="text-align:center"%) 83 83 |Funktionsterm |{{formula}}g(x)= (2x-1)\cdot e^{2x-1}{{/formula}}| {{formula}}h(x)=-2x+1+e^{2x-1}{{/formula}} ... ... @@ -95,11 +95,6 @@ 95 95 Begründe, dass der Graph von f keine Extremstelle im Intervall [0;4] besitzt. 96 96 {{/aufgabe}} 97 97 98 -{{aufgabe id="Ableitungsfunktion gegeben" afb="II" kompetenzen="K1, K2, K5" quelle="Martina Wagner, Holger Engels" niveau= "e" zeit="7"}} 99 -Von einer Funktion {{formula}}g{{/formula}} ist die erste Ableitung gegeben mit {{formula}}g´(x)=e^{-x^2+2x}(-2x+2){{/formula}}. 100 -Bestimme die Koordinaten der Wendepunkte. 101 -{{/aufgabe}} 102 - 103 103 {{aufgabe id="Nullstellen der Ableitungsfunktionen" afb="II" kompetenzen="K4,K6" quelle="Holger Engels" zeit="5"}} 104 104 Gegenstand der Betrachtung sei eine Polynomfunktion //f//, ihre ersten beiden Ableitungen und ihr Graph //K,,f,,// an der Stelle //x,,0,,//. Gib für jedes Kästchen an, ob es sich um eine Extremstelle (ES), Wendestelle (WS), Sattelstelle (SS), einen normalen Kurvenpunkt (╱) handelt, oder ob die Kombination evtl. widersprüchlich ist (↯). 105 105 (%class="border" style="text-align:center"%)