Änderungen von Dokument Lösung Oktaeder
Zuletzt geändert von akukin am 2024/10/01 17:25
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,26 +1,81 @@ 1 -1. (((Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht. 1 +=== Teilaufgabe 1 === 2 + 3 +{{detail summary="Erwartungshorizont"}} 4 +Kantenlänge des Würfels: {{formula}}\left|\overrightarrow{AC}\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{144}=12{{/formula}} 5 +{{/detail}} 6 + 7 + 8 +{{detail summary="Erläuterung der Lösung"}} 9 +Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht. 10 +<br> 2 2 {{formula}}A\left(1\left|2\right|1\right),C\left(-3\left|-6\right|9\right){{/formula}} 12 +<br> 3 3 {{formula}}\left|\overrightarrow{AC}\right|=\left|\overrightarrow{OC}-\overrightarrow{OA}\right|=\left|\left(\begin{array}{c} -3 \\ -6 \\ 9 \end{array}\right)-\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right)\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{(-4)^2+(-8)^2+8^2}=\sqrt{144}=12{{/formula}} 4 4 5 -Also ist die Kantenlänge des Würfels 12. ))) 6 -1. (((Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht. 15 +<br> 16 +Also ist die Kantenlänge des Würfels {{formula}}12{{/formula}}. 17 +{{/detail}} 7 7 8 -Da die Kantenlänge des Würfels 12 ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus 6 Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. 19 + 20 +=== Teilaufgabe 2 === 21 + 22 +{{detail summary="Erwartungshorizont"}} 23 +Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AC}: M\left(-1\left|-2\right|5\right){{/formula}} 24 +<br> 25 +Normalenvektor von {{formula}}H: \ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \ \text{mit} \ \left|\vec{n}\right|=3{{/formula}} 26 +<br> 27 +Damit ergeben sich die Koordinaten eines der beiden Eckpunkte, die nicht in {{formula}}H{{/formula}} liegen, zu 28 +<br> 29 +{{formula}}\overrightarrow{OM}+2\cdot\vec{n}=\left(\begin{array}{c} 3\\ 0 \\ 9 \end{array}\right){{/formula}}. 30 + 31 +{{/detail}} 32 + 33 + 34 +{{detail summary="Erläuterung der Lösung"}} 35 +Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht. 36 +<br> 37 +Da die Kantenlänge des Würfels {{formula}}12{{/formula}} ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus {{formula}}6{{/formula}} Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. 38 +<br> 9 9 Der Normalenvektor besteht aus den Koeffizienten der Gleichung der Ebene {{formula}}H{{/formula}} in Koordinatenform: 40 +<br> 10 10 {{formula}}H:\ 2x_1+x_2+2x_3=6 \ \Rightarrow\ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}} 42 +<br> 11 11 Der Betrag von {{formula}}\vec{n}{{/formula}} ergibt: {{formula}}\left|\vec{n}\right|=\sqrt{2^2+1^2+2^2}=\sqrt{9}=3{{/formula}} 12 -Da die Kantenlänge des Würfels 12 ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: 44 +<br> 45 +Da die Kantenlänge des Würfels {{formula}}12{{/formula}} ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: 13 13 14 -{{formula}}\overrightarrow{OP_1}=\overrightarrow{OM}+2\cdot\vec{n}=\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n}=\frac{1}{2}\cdot 15 -\left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)=\frac{1}{2}\cdot 16 -\left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)= 47 +{{formula}} 48 +\begin{align} 49 +\overrightarrow{OP_1}&=\overrightarrow{OM}+2\cdot\vec{n} =\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n} \\ 50 +&=\frac{1}{2}\cdot 51 +\left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 52 +&=\frac{1}{2}\cdot 53 +\left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 54 +&= 17 17 \left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)+\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} 3 \\ 0 \\ 9 \end{array}\right) 56 +\end{align} 18 18 {{/formula}} 58 + 19 19 Einer der beiden gesuchten Punkte lautet also {{formula}}P_1\left(3\left|0\right|9\right){{/formula}}. 60 +<br> 20 20 Den anderen gesuchten Punkt (den unteren Punkt) {{formula}}P_2{{/formula}} erhält man, wenn man den doppelten Normalenvektor subtrahiert statt addiert: 21 21 22 -Der zweite Punkt lautet also {{formula}}P_2\left(-5\left|-4\right|1\right){{/formula}}. 63 +{{formula}} 64 +\begin{align} 65 +\overrightarrow{OP_2}&=\overrightarrow{OM}-2\cdot\vec{n} =\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)-2\cdot\vec{n} \\ 66 +&=\frac{1}{2}\cdot 67 +\left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)-2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 68 +&=\frac{1}{2}\cdot 69 +\left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)-2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 70 +&= 71 +\left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)-\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} -5 \\ -4 \\ 1 \end{array}\right) 72 +\end{align} 73 +{{/formula}} 23 23 75 + 76 +Der zweite Punkt lautet also {{formula}}P_2\left(-5\left|-4\right|1\right){{/formula}}. 77 +<br> 78 +<br> 24 24 __Hinweis__: Es ist jedoch nur nach einem der beiden Punkte gefragt. 80 +{{/detail}} 25 25 26 -)))