Änderungen von Dokument BPE 12.1 Potenzen mit rationalem Exponenten, Normdarstellung
Zuletzt geändert von Simone Schuetze am 2025/12/18 14:43
Von Version 204.1
bearbeitet von Simone Schuetze
am 2025/12/18 14:43
am 2025/12/18 14:43
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 157.1
bearbeitet von Sandra Vogt
am 2025/12/17 13:30
am 2025/12/17 13:30
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.s imoneschuetze1 +XWiki.sandravogt - Inhalt
-
... ... @@ -5,43 +5,6 @@ 5 5 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen in Normdarstellung angeben. 6 6 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen aus dem Makro- oder Mikrozahlenbereich als Zehnerpotenzen darstellen. 7 7 8 -{{aufgabe id="Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}} 9 -Bestimme die fehlenden Zahlen in den Lücken und führe fort: 10 -| {{formula}}\square{{/formula}} | {{formula}}3^2{{/formula}} | {{formula}}3^1{{/formula}} | {{formula}}3^0{{/formula}} | {{formula}}3^{-1}{{/formula}} | {{formula}}3^{-2}{{/formula}} | {{formula}}\square{{/formula}} 11 -| 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}} 12 -{{/aufgabe}} 13 - 14 -{{aufgabe id="Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 15 -Gib als Bruch an und berechne, wenn möglich. 16 -(% style="list-style: alphastyle" %) 17 -1. {{formula}}3^{-5}{{/formula}} 18 -1. {{formula}} a^{-b}{{/formula}} 19 -1. {{formula}}8 \cdot b^{-2}{{/formula}} 20 -1. {{formula}}27^{-\frac{1}{3}} {{/formula}} 21 -{{/aufgabe}} 22 - 23 -{{aufgabe id="Vom Bruch zur negativen Potenz" afb="I" kompetenzen="K5" zeit="1" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}} 24 -Nenne die Potenzschreibweise von {{formula}} \frac{1}{8} {{/formula}}. 25 -{{/aufgabe}} 26 - 27 -{{aufgabe id="Aussage zu rationalen Exponenten begründen" afb="III" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}} 28 -Ein Schüler behauptet: //„{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}.“// 29 - 30 -a) Untersuche, ob diese Aussage für alle Zahlen wahr ist. 31 -Begründe deine Entscheidung mithilfe eines geeigneten Beispiels oder Gegenbeispiels. 32 - 33 -b) Erläutere, warum der Term {{formula}}0^{-1}{{/formula}} nicht definiert ist. 34 - 35 -{{/aufgabe}} 36 - 37 -{{aufgabe id="Wertetabelle mit rationalem Exponenten fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 38 -Führe fort .. 39 - 40 -| {{formula}}2^4{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^{1/2}{{/formula}} | {{formula}}2^{1/4}{{/formula}} 41 -| 16 | 4 | 2 | | | | 42 -{{/aufgabe}} 43 - 44 - 45 45 {{aufgabe id="Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}} 46 46 Gib in Wurzelschreibweise an und berechne, wenn möglich. 47 47 (% style="list-style: alphastyle" %) ... ... @@ -59,7 +59,7 @@ 59 59 1. {{formula}}\sqrt[a]{b^c}{{/formula}} 60 60 {{/aufgabe}} 61 61 62 -{{aufgabe id="Lücken bei der Wurzel- und Potenzschreibweise" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}}25 +{{aufgabe id="Lücken" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}} 63 63 Ermittle die fehlenden Zahlen in den Lücken: 64 64 (% style="list-style: alphastyle" %) 65 65 1. {{formula}}a^{\frac{\square}{4}}=\sqrt[\square]{a^5}{{/formula}} ... ... @@ -68,40 +68,22 @@ 68 68 1. {{formula}}\sqrt[4]{d^{\frac{2}{3}}}= d^{\frac{\square}{6}}{{/formula}} 69 69 {{/aufgabe}} 70 70 71 -{{aufgabe id="Normdarstellungen und Namen großer Zahlen mit Zehnerpotenzen" afb="II" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 72 -1) Begründe, ob die Zahlen in a) und b) in Normdarstellung angegeben sind. 73 -Verbessere gegebenenfalls. 74 - 75 -a) {{formula}}123 \cdot 10^{12}{{/formula}} 76 - 77 -b) {{formula}}7,32 \cdot 10^{10}{{/formula}} 78 - 79 -2) Gib die großen Zahlen aus a) und b) ausgesprochen in Worten an. 80 - 34 +{{aufgabe id="Negative Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}} 35 +Bestimme die fehlenden Zahlen in den Lücken und führe fort: 36 +| {{formula}}\square{{/formula}} | {{formula}}3^2{{/formula}} | {{formula}}3^1{{/formula}} | {{formula}}3^0{{/formula}} | {{formula}}3^{-1}{{/formula}} | {{formula}}3^{-2}{{/formula}} | {{formula}}\square{{/formula}} 37 +| 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}} 81 81 {{/aufgabe}} 82 82 83 -{{aufgabe id="Größenzuordnung bei Normdarstellung und Zehnerpotenzen" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 84 -Gegeben sind die folgenden Zahlen in der Form von Zehnerpotenzen: 85 - 86 -{{formula}}7 \cdot 10^{-5}{{/formula}}, 87 -{{formula}}1 \cdot 10^{2}{{/formula}}, 88 -{{formula}}1 \cdot 10^{-10}{{/formula}} 89 - 90 -Außerdem passen folgende Beispiele zu den gegebenen Größen: 91 -Länge eines Fußballfeldes 92 -Durchmesser eines Atoms 93 -Dicke eines menschlichen Haares 94 - 95 -a) Ordne die gegebenen Zahlen der Größe nach (von klein nach groß) und ordne sie gleichzeitig dem jeweils passenden Beispiel begründet zu. 96 - 97 -b) Erläutere, warum die Darstellung mit Zehnerpotenzen besonders geeignet ist, um sehr große und sehr kleine Größen miteinander zu vergleichen. 98 - 99 - 100 - 40 +{{aufgabe id="Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 41 +Gib als Bruch an und berechne, wenn möglich. 42 +(% style="list-style: alphastyle" %) 43 +1. {{formula}}3^{-5}{{/formula}} 44 +1. {{formula}} a^{-b}{{/formula}} 45 +1. {{formula}}8 \cdot b^{-2}{{/formula}} 46 +1. {{formula}}27^{-\frac{1}{3}} {{/formula}} 101 101 {{/aufgabe}} 102 102 103 - 104 -{{aufgabe id="Normdarstellung des Taschenrechners" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 49 +{{aufgabe id="Symbole ergänzen" afb="II" kompetenzen="K4, K5" zeit="4 " quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 105 105 (% style="list-style: alphastyle" %) 106 106 1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an. 107 107 [[image:Taschenrechnerdisplay.png||width="100"]] ... ... @@ -110,23 +110,14 @@ 110 110 [[image:Taschenrechnerdisplay_2.png||width="100"]] 111 111 {{/aufgabe}} 112 112 113 -{{aufgabe id=" Darstellungwechsel begründen" afb="III" kompetenzen="K1, K2, K4, K6"zeit="6"quelle="TeamKS Offenburg" cc="by-sa"}}114 - Gegeben ist die Zahl {{formula}}0,0004 {{/formula}}58 +{{aufgabe id="Negative Exponenten" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 59 +Führe fort .. 115 115 61 +| {{formula}}2^3{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^0{{/formula}} | {{formula}}2^{-1}{{/formula}} | {{formula}}2^{-2}{{/formula}} 62 +| 8 | 4 | 2 | | | | 63 +{{/aufgabe}} 116 116 117 -1. Stelle die Zahl jeweils in den folgenden Darstellungsformen dar: 118 - a) in Prozent 119 - b) als vollständig gekürzter Bruch 120 - c) als Zahl mit negativem Exponenten der Form {{formula}}x^{-2}{{/formula}} 121 - d) als Zehnerpotenz (mind. 2 Beispiele) 122 - e) als Zahl in Normdarstellung 123 - 124 -1. Erläutere, worin sich diese Darstellungen unterscheiden und für welche Zwecke jeweils eine Darstellung besonders geeignet ist. Gehe dabei auf mindestens zwei verschiedene Darstellungsformen ein. 125 125 126 126 67 +{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 127 127 128 - 129 -{{/aufgabe}} 130 - 131 -{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="5"/}} 132 -