Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 100.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:43
am 2025/01/05 00:43
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 96.1
bearbeitet von Martin Rathgeb
am 2024/12/23 01:22
am 2024/12/23 01:22
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,7 +3,7 @@ 3 3 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 4 4 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 5 5 6 -(% class="abc" %)6 +(% style="list-style: alphastyle" %) 7 7 1. Erstelle die Funktion {{formula}}t{{/formula}}, die die benötigte Zeit in Minuten in Abhängigkeit von der Geschwindigkeit {{formula}}v{{/formula}} in km/h beschreibt. 8 8 1. Bestimme die Definitionslücke der Funktion {{formula}}t{{/formula}}. 9 9 1. Erläutere, warum es in diesem Kontext sinnvoll ist, eine Definitionslücke zu haben. ... ... @@ -13,10 +13,10 @@ 13 13 {{aufgabe id="Potenzgleichungen lösen - graphisch und rechnerisch" afb="II" zeit="15" kompetenzen="K4,K5" quelle="Martin Stern, Niklas Wunder" cc="BY-SA"}} 14 14 Gegeben sind die Funktionen //f// und //g// mit den Funktionsgleichungen {{formula}}f(x)=\sqrt{-x+1}{{/formula}} und {{formula}} g(x)=-\sqrt{x+5}+3 {{/formula}}. 15 15 16 -(% class="abc" %)16 +(% style="list-style: alphastyle" %) 17 17 1. Gib jeweils die maximale Defintionsmenge und den zugehörigen Wertebereich an. 18 18 1. Zeichne die Funktionsgraphen zu den Funktionen in ein gemeinsammes Koordinatensystem im Intervall {{formula}}[-6; +2]{{/formula}}. 19 -1. Bestimme die Lösungen der Wurzelgleichung {{formula}} f(x)=g(x){{/formula}} graphisch.19 +1. Bestimme die Lösungen der Wurzelgleichung {{formula}}\sqrt{-x+1} = -\sqrt{x+5}+3{{/formula}} graphisch. 20 20 1. Berechne die Lösungen und vergleiche deine berechneten Lösungen mit den graphischen Lösungen aus c). 21 21 {{/aufgabe}} 22 22 ... ... @@ -62,18 +62,27 @@ 62 62 63 63 64 64 {{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}} 65 -Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben derVerschiebungundderStreckunginRichtung einer Koordinatenachsebzw. derSpiegelung aneiner Koordinatenachse gibt es eineweiterebesondere Transformation, nämlich die//Spiegelung an der ersten Winkelhalbierenden//, dasistdie Gerade mitderGleichung {{formula}}y=x{{/formula}}. DieseSpiegelungbewirktdenKoordinatentausch{{formula}}(x|y)\mapsto(y|x){{/formula}},d.h., die Umkehrung{{formula}}y\mapsto x{{/formula}}derZuordnung {{formula}}x\mapstoy{{/formula}}.65 +Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben Verschiebungen, Streckungen und Spiegelungen an den Achsen gibt es eine besondere Transformation, die in ihrer Bedeutung oft übersehen wird: die Spiegelung an der ersten Winkelhalbierenden, d.h., an der Geraden mit Gleichung {{formula}}y=x{{/formula}}. Diese Transformation ist weit mehr als eine Spielerei, denn sie führt auf die Umkehrung der Funktion. 66 66 67 +Betrachten wir dafür zunächst ein Beispiel, nämlich die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}}. Um die Gleichung für die Umkehrung rechnerisch zu ermitteln, löst man {{formula}}y=x^2{{/formula}} nach //x// auf, d.h.: {{formula}}x=\pm \sqrt{y}{{/formula}}. 67 67 68 -Betrachten wir dafür zunächst ein Beispiel, nämlich die Gleichung {{formula}}y=x^2{{/formula}}. Um daraus die Gleichung für die Umkehrung rechnerisch zu ermitteln, löst man nach //x// auf, d.h.: {{formula}}x=\pm \sqrt{y}{{/formula}}. 69 -Vertausche //x// und //y// miteinander um die Gleichung der Umkehrung zu erhalten. 69 +{{formula}} 70 +\begin{align*} 71 +y=x^2 \;\; | \,\sqrt{\phantomtext}\\ 72 +x=\sqrt{y}\;\; 73 +{{/formula}} 74 +Vertausche x und y miteinander um die Funktionsgleichung des gespiegelten Funktionsgraphens zu erhalten. 75 +{{formula}} 76 +y=\sqrt{x} 77 +\end{align*} 78 +{{/formula}} 70 70 71 -Betrachte nundie folgenden dreiGleichungenzuden nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.80 +Betrachte die folgenden drei Funktionsgleichungen mit ihren nachfolgenden Graphen: {{formula}}f(x)=2x{{/formula}}, {{formula}}f(x)=(x+2)^2{{/formula}} und {{formula}}f(x)=x^3{{/formula}}. 72 72 [[image:Einheitsuebergreifend2.png||width="400px"]] 73 73 (% class="abc" %) 74 -1. Löse die Gleichungjeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//.75 -1. Zeichne die Graphen derUmkehrungeninsKoordinatensystemeinund untersuche, wie sie zur ersten Winkelhalbierenden liegen.76 -1. Die in a) berechneten Terme sind die Funktionsterme der Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}) der Funktionen {{formula}}f{{/formula}}. Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, in dem du {{formula}}f(x){{/formula}} für //y// einsetzt und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.83 +1. Löse {{formula}}f(x)=y{{/formula}} nach Ersetzung des Funktionswerts {{formula}}f(x){{/formula}} durch den jeweiligen Funktionsterm nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//. 84 +1. Zeichne die Paare von Graphen und untersuche, wie sie zur ersten Winkelhalbierenden liegen. 85 +1. Die in a) berechneten Terme sind die Funktionsterme der Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}). Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, in dem du {{formula}}f(x){{/formula}} für //y// einsetzt und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt. 77 77 1. Abschließend stellt sich die Frage: Warum muss der Definitionsbereich der Funktion //f// verkleinert werden, wenn die Umkehrfunktion berechnet wird? Begründe diese Einschränkung mit den Ergebnissen aus a) und b). 78 78 {{/aufgabe}} 79 79