Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 98.1
bearbeitet von Martin Rathgeb
am 2024/12/23 01:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 84.3
bearbeitet von Dirk Tebbe
am 2024/11/15 09:38
Änderungskommentar: Kommentar hinzugefügt

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.dirktebbe
Inhalt
... ... @@ -60,20 +60,4 @@
60 60  {{/lehrende}}
61 61  {{/aufgabe}}
62 62  
63 -
64 -{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}}
65 -Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben Verschiebungen, Streckungen und Spiegelungen an den Achsen gibt es eine besondere Transformation, die in ihrer Bedeutung oft übersehen wird: die Spiegelung an der ersten Winkelhalbierenden, d.h., an der Geraden mit Gleichung {{formula}}y=x{{/formula}}. Diese Transformation ist weit mehr als eine Spielerei, denn sie führt auf die Umkehrung der Funktion.
66 -
67 -Betrachten wir dafür zunächst ein Beispiel, nämlich die Gleichung {{formula}}y=x^2{{/formula}}. Um daraus die Gleichung für die Umkehrung rechnerisch zu ermitteln, löst man nach //x// auf, d.h.: {{formula}}x=\pm \sqrt{y}{{/formula}}.
68 -Vertausche //x// und //y// miteinander um die Gleichung der Umkehrung zu erhalten.
69 -
70 -Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.
71 -[[image:Einheitsuebergreifend2.png||width="400px"]]
72 -(% class="abc" %)
73 -1. Löse die Gleichung jeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//.
74 -1. Zeichne die Graphen der Umkehrungen ins Koordinatensystem ein und untersuche, wie sie zur ersten Winkelhalbierenden liegen.
75 -1. Die in a) berechneten Terme sind die Funktionsterme der Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}) der Funktionen {{formula}}f{{/formula}}. Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, in dem du {{formula}}f(x){{/formula}} für //y// einsetzt und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
76 -1. Abschließend stellt sich die Frage: Warum muss der Definitionsbereich der Funktion //f// verkleinert werden, wenn die Umkehrfunktion berechnet wird? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
77 -{{/aufgabe}}
78 -
79 79  {{matrix/}}
Einheitsuebergreifend2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.niklaswunder
Größe
... ... @@ -1,1 +1,0 @@
1 -22.7 KB
Inhalt