Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 188.1
bearbeitet von Martin Rathgeb
am 2024/10/15 11:02
am 2024/10/15 11:02
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 198.7
bearbeitet von Holger Engels
am 2024/10/15 20:37
am 2024/10/15 20:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinrathgeb1 +XWiki.holgerengels - Inhalt
-
... ... @@ -5,14 +5,7 @@ 5 5 [[Kompetenzen.K1]] [[Kompetenzen.K4]] Ich kann die Eigenschaften von Potenzfunktionen ausgehend von den Funktionsgraphen erläutern 6 6 [[Kompetenzen.K1]] Ich kann den Stetigkeitsbegriff anschaulich anhand der Graphen von Potenzfunktionen erläutern 7 7 8 -Verhalten +/- oo 9 -Verhalten nahe Definitionslücke 10 -Asymptoten 11 -Symmetrie 12 -Stetigkeit 13 - 14 - 15 -{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 8 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="7" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 16 16 (% style="list-style: alphastyle" %) 17 17 1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). 18 18 ((((% class="border" style="width:100%" %) ... ... @@ -25,19 +25,10 @@ 25 25 |={{formula}}g(x){{/formula}}||-1||||||||||||20|30|40|50|60|70|80|90|100 26 26 ))) 27 27 1. Erkennst du eine Symmetrie? 28 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme 29 -((( 30 -1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 31 -2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 32 -))) 33 -1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche 34 -((( 35 -1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 36 -2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 37 -))) 21 +1. Beschreibe das Randverhalten der Funktionen und nenne ihre Wertemengen. 38 38 {{/aufgabe}} 39 39 40 -{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 24 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="9" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 41 41 Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen (wo möglich). 42 42 43 43 (% style="list-style: alphastyle" %) ... ... @@ -65,18 +65,9 @@ 65 65 ))) 66 66 1. Erkennst du eine Symmetrie? 67 67 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 68 -1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}. 69 69 {{/aufgabe}} 70 70 71 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 72 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 73 - 74 -{{lehrende}} 75 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Layout soll sich durchsetzen. 76 -{{/lehrende}} 77 -{{/aufgabe}} 78 - 79 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 54 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 80 80 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}. 81 81 (% style="list-style: alphastyle" %) 82 82 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -84,26 +84,33 @@ 84 84 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 85 85 {{/aufgabe}} 86 86 87 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 62 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 88 88 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}}. 89 89 (% style="list-style: alphastyle" %) 90 90 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. 91 91 1. Skizziere jeweils die Graphen der Funktionen ggf. mit ihren Asymptoten; benutze dafür ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. 92 92 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 93 - 94 -{{lehrende}} 95 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere soll sich durchsetzen. 96 -{{/lehrende}} 97 97 {{/aufgabe}} 98 98 99 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 100 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 101 -{{lehrende}} 102 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Layout soll sich für diese und die (nach-)folgende Aufgabe durchsetzen. 103 -{{/lehrende}} 70 +{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K2,K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 71 +**unfertig!** 72 + 73 +(% style="list-style: alphastyle" start="5" %) 74 +1. (((Gegeben seien die Funktionen //f// und //g// mit {{formula}}f(x) = x^2{{/formula}} und {{formula}}g(x) = \sqrt{2}{{/formula}}. Fülle jeweils die Lücken aus: 75 +{{formula}}3\mapsto{\text{g}}\square\xmapsto{g}\square{{/formula}} 76 + 77 +{{formula}} 78 +\begin{align*} 79 +\xmapsto{\text{Look here}} && x\\ 80 +\xrightarrow{\text{Something}} && y \\ 81 +\xhookrightarrow{\text{Something completely different}} && z 82 +\end{align*} 83 +{{/formula}} 84 +))) 85 +1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 104 104 {{/aufgabe}} 105 105 106 -{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 88 +{{aufgabe id="D und W" afb="I" kompetenzen="K4" zeit="8" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 107 107 Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten: 108 108 109 109 (% style="list-style: alphastyle" %) ... ... @@ -111,16 +111,17 @@ 111 111 1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}} 112 112 {{/aufgabe}} 113 113 114 -{{aufgabe id=" Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}115 - Gegebenistdie Funktionsgleichung {{formula}}f(x)=\frac{-3}{x-2}+4{{/formula}}.96 +{{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" zeit="5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 97 +Untersuche die folgenden Funktionen rechnerisch auf Symmetrie zum Ursprung und Symmetrie zur y-Achse. 116 116 117 117 (% style="list-style: alphastyle" %) 118 -1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an. 119 -1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote. 120 -1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist. 100 +1. {{formula}}f(x)=\frac{5}{x}{{/formula}} 101 +1. {{formula}}f(x)=\frac{5}{x}+1{{/formula}} 102 +1. {{formula}}f(x)=\frac{5}{x^2}{{/formula}} 103 +1. {{formula}}f(x)=\frac{5}{x^2}+1{{/formula}} 121 121 {{/aufgabe}} 122 122 123 -{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 106 +{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" zeit="10" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 124 124 [[image:venn.svg|| width="500" style="float: left"]] 125 125 Gib für jedes Feld **A** .. **H** eine passende Funktion {{formula}}f(x)=a\cdot x^n{{/formula}} an. Sollte ein Feld nicht gefüllt werden können, begründe bitte, warum es nicht geht. 126 126 ... ... @@ -137,11 +137,11 @@ 137 137 **Zusatzaufgabe:** Finde möglichst einfache/ komplexe Lösungen. 138 138 {{/aufgabe}} 139 139 140 -{{aufgabe id="Stetigkeit - Anschaulische Einführung (Gegenlese)" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}123 +{{aufgabe id="Stetigkeit - Anschaulische Einführung" afb="II" kompetenzen="K1,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="3"}} 141 141 Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich nicht stetig, weil man ihren Graphen nicht ohne Absetzen zeichnen kann. Nimm dazu Stellung! 142 142 {{/aufgabe}} 143 143 144 -{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 127 +{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="K4,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 145 145 Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten Bereich stetig ist! 146 146 [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]] 147 147 [[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %) Hinweis: ... ... @@ -149,7 +149,13 @@ 149 149 ⭘ schließt ihn aus 150 150 {{/aufgabe}} 151 151 152 -{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5" niveau=p}} 153 -Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung! 135 +{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="7" niveau="p"}} 136 +Sascha formuliert die beiden nachfolgenden Behauptungen. Nimm dazu Stellung! 137 +(% style="list-style: alphastyle" %) 138 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 139 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 154 154 {{/aufgabe}} 155 155 142 +{{lehrende}}K3 wird im Bildungsplan nicht genannt, wird aber bei Übergreifend aufgegriffen.{{/lehrende}} 143 + 144 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="3"/}}