Änderungen von Dokument BPE 3.1 Eigenschaften und Formen
Zuletzt geändert von Holger Engels am 2025/04/09 13:57
Von Version 91.1
bearbeitet von Niklas Wunder
am 2024/12/17 17:42
am 2024/12/17 17:42
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 92.1
bearbeitet von Holger Engels
am 2024/12/17 18:01
am 2024/12/17 18:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. niklaswunder1 +XWiki.holgerengels - Inhalt
-
... ... @@ -9,8 +9,8 @@ 9 9 [[Nullstellen und Vielfachheiten interaktiv>>https://kmap.eu/app/browser/Mathematik/Ganzrationale%20Funktionen/Produktform#erkunden]] 10 10 {{/lernende}} 11 11 12 -{{aufgabe id="Schaubilder zuordnen Teil 1" afb="II" kompetenzen="K 3,K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5"}}13 -Ordne die Funktionsterme den 5 Schaubildern zu. Begründe deine Wahl. 12 +{{aufgabe id="Schaubilder zuordnen Teil 1" afb="II" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5"}} 13 +[[image:geogebra_polynome_dritten_Grades.png||width=600 style=float:right]]Ordne die Funktionsterme den 5 Schaubildern zu. Begründe deine Wahl. 14 14 (% style="list-style: alphastyle" %) 15 15 1. {{formula}}f_1(x)=x^3{{/formula}} 16 16 1. {{formula}}f_2(x)=-x^2\cdot(x-3){{/formula}} ... ... @@ -17,13 +17,10 @@ 17 17 1. {{formula}}f_3(x)=0{,}5\,x^3{{/formula}} 18 18 1. {{formula}}f_4(x)=0{,}5\,x^3+2\,x^2-3{{/formula}} 19 19 1. {{formula}}f_5(x)=-x^3-2\,x^2+2{{/formula}} 20 - 21 -[[Abbildung 1>>image:geogebra_polynome_dritten_Grades.png||width=640 height=402]] 22 - 23 23 {{/aufgabe}} 24 24 25 -{{aufgabe id="Schaubilder zuordnen Teil 2" afb="II" kompetenzen="K 3,K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5"}}26 -Ordne die Funktionsterme den 5 Schaubildern zu. Begründe deine Wahl. 22 +{{aufgabe id="Schaubilder zuordnen Teil 2" afb="II" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5"}} 23 +[[image:Polynome_zuordnen-Grad_vier.png||width=600 style="float:right"]]Ordne die Funktionsterme den 5 Schaubildern zu. Begründe deine Wahl. 27 27 (% style="list-style: alphastyle" %) 28 28 1. {{formula}}f_1(x)=-0{,}25\,x^4{{/formula}} 29 29 1. {{formula}}f_2(x)=-0{,}5\,x^4-1{,}5\,x^3-1{,}5\,x^2-1{{/formula}} ... ... @@ -30,21 +30,16 @@ 30 30 1. {{formula}}f_3(x)=-x^4{{/formula}} 31 31 1. {{formula}}f_4(x)=-x^4-x^3+2x^2+2{{/formula}} 32 32 1. {{formula}}f_5(x)=-0{,}3\cdot (x+2)^2\cdot(x-2)^2+4{{/formula}} 33 - 34 -[[Abbildung 1>>image:Polynome_zuordnen-Grad_vier.png||width=640 height=402]] 35 - 36 36 {{/aufgabe}} 37 37 38 38 {{aufgabe id="Produktform" afb="I" kompetenzen="K4" quelle="Juliane Maier" cc="BY-SA" zeit="10"}} 39 39 Bestimme zu den abbgebildeten Funktionsgraphen eine mögliche Funktionsgleichung in Produktform. 40 - 41 -[[Abbildung 1>>image:Graphen Produktform.png||width=640 height=402]] 42 - 34 +[[image:Graphen Produktform.png||width=600]] 43 43 {{/aufgabe}} 44 44 45 45 {{aufgabe id="Skizzieren" afb="I" kompetenzen="K4" quelle="Juliane Maier" cc="BY-SA"}} 46 46 Gegeben ist die Funktion {{formula}}f{{/formula}} mit {{formula}}D=\mathbb{R}{{/formula}}. Skizziere den Funktionsgraphen. 47 -(% style="list-style:alphastyle" %)39 +(% class="abc" %) 48 48 1. {{formula}}f(x)=(x-2)^3{{/formula}} 49 49 1. {{formula}}f(x)=x^4-x^2{{/formula}} 50 50 {{/aufgabe}} ... ... @@ -53,24 +53,23 @@ 53 53 Beurteile, ob die folgenden Aussagen immer, nie oder manchmal unter bestimmten Bedingungen zutreffen. Begründe deine Entscheidung. 54 54 (% style="list-style: alphastyle" %) 55 55 1. Der Graph von {{formula}}f{{/formula}} mit {{formula}}f(x)=-3\cdot x^n {{/formula}} verläuft für ein gerades n von links unten nach rechts unten. 56 -1. Der Graph einer Polynomfunktion mit einem ungeraden Grad hat mindestens eine Nullstelle. 48 +1. Der Graph einer Polynomfunktion mit einem ungeraden Grad hat mindestens eine Nullstelle. 57 57 1. Der Graph einer zum Ursprung symmetrischen Funktion geht durch den Punkt (1|1). 58 58 1. Es gibt mindestens eine Funktion 5.Grades, die keine Nullstelle besitzt. 59 59 1. Der Graph einer achsensymmetrischen Funktion hat mindestens eine Nullstelle. 60 -1. Durch die beiden Punkte P(-2|1) und Q(2|2) verläuft kein Graph einer Funktion vierten Grades. 52 +1. Durch die beiden Punkte P(-2|1) und Q(2|2) verläuft kein Graph einer Funktion vierten Grades. 53 +{{/aufgabe}} 61 61 62 - {{/aufgabe}} 63 63 64 - 65 -{{aufgabe id="Darstellungsformen umwandeln" afb="II" kompetenzen="K3,K4" quelle="Niklas Wunder, Katharina Schneider" zeit="15"}} 56 +{{aufgabe id="Darstellungsformen umwandeln" afb="II" kompetenzen="K5" quelle="Niklas Wunder, Katharina Schneider" zeit="15"}} 66 66 Wandle in die entsprechend andere Darstellungsform um (Hauptform bzw. Produktform). 67 67 (% style="list-style: alphastyle" %) 68 68 1. {{formula}}f(x)=-\frac{1}{16}\cdot (x-2)^2\cdot (x-8){{/formula}} 69 69 1. {{formula}}f(x)=(x-3)\cdot (x^2+3x+9){{/formula}} 70 -1. {{formula}}f(x)=3\,x^3-33\,x^2+96\,x-84{{/formula}} 71 - 61 +1. {{formula}}f(x)=3\,x^3-33\,x^2+96\,x-84{{/formula}} 62 +Hinweis: Die Funktion //f// besitzt nur die beiden Nullstellen {{formula}} x_1 =1 {{/formula}} und {{formula}} x_2 =7 {{/formula}}. 72 72 1. {{formula}}f(x)=-2\,x^4+18\,x^2+8\,x-24{{/formula}} 73 -Hinweis: Die Funktion f besitzt nur die Nullstellen {{formula}} x_1 =-2, x_2=1 {{/formula}} und {{formula}} x_3 =3 {{/formula}}. 64 +Hinweis: Die Funktion //f// besitzt nur die Nullstellen {{formula}} x_1 =-2, x_2=1 {{/formula}} und {{formula}} x_3 =3 {{/formula}}. 74 74 {{/aufgabe}} 75 75 76 76 {{aufgabe id="Parabelmaschine" afb="II" kompetenzen="K2, K5" tags="problemlösen" quelle="Simon Oswald" cc="BY-SA" zeit="20"}} ... ... @@ -98,11 +98,7 @@ 98 98 {{/lehrende}} 99 99 {{/aufgabe}} 100 100 101 -{{lehrende}} 102 -[[Polynomfunktionsgraphen begreifen]] 103 -{{/lehrende}} 104 - 105 -{{aufgabe id="Parameter bestimmen" afb="III" kompetenzen="K4" quelle="Katharina Schneider,Niklas Wunder" cc="BY-SA"}} 92 +{{aufgabe id="Parameter bestimmen" afb="III" kompetenzen="K4,K5" quelle="Katharina Schneider,Niklas Wunder" cc="BY-SA"}} 106 106 Gegeben sind die Funktionsterme der Funktionen {{formula}}f,g,h,k{{/formula}} sowie Punkte, durch die das Schaubild der jeweiligen Funktion verläuft. Bestimme die fehlenden Parameter für jede Funktion. 107 107 (% style="list-style: alphastyle" %) 108 108 1. {{formula}}f(x)=a\cdot (x-3)\cdot (x-5)^2{{/formula}} mit {{formula}} P(5|20) {{/formula}} ... ... @@ -111,4 +111,8 @@ 111 111 1. {{formula}} k(x)= a\cdot(x-b)^3-7 {{/formula}} mit {{formula}} P(2|-7) {{/formula}} und {{formula}} Q(0|-5) {{/formula}} 112 112 {{/aufgabe}} 113 113 114 -{{seitenreflexion bildungsplan="1" kompetenzen="2" anforderungsbereiche="3" kriterien="1" menge="0"/}} 101 +{{lehrende}} 102 +[[Polynomfunktionsgraphen begreifen]] 103 +{{/lehrende}} 104 + 105 +{{seitenreflexion bildungsplan="4" kompetenzen="2" anforderungsbereiche="3" kriterien="1" menge="0"/}}